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Abstract

At the large scales at which many industries operate at these days, the need for e�cient resource
allocation has become increasingly important. The manner in which to allocate such resources
has been widely debated and a lot of research as been conducted into this.[1][2][3]. This paper
will primarily be expanding upon the counter intuitive results attained in [4], where it was found
that to reduce delay, you may be best to leave certain workers idle. We shall firstly generalise
these results for a wider class of queuing and cost functions in such large systems we find that this
phenomenon does in fact extend to these other applications, as well as observing more peculiarities
in our solutions. Then we shall formulate this into an Economic Maximisation Problem, using
these previously obtained allocations. We shall observe results in both a continuous setting, before
then expanding to a discrete setting. We discover some interesting results as we alter various
parameters, such as the maximum load the system can process. Our aim to reach an optimal
solution where we can invest in units and allocate resources in a way that maximises our profits.
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Chapter 1

Introduction
Allocating resources in the most e�cient manner is on of the key aspects to project management.
Deciding how much work you give to each worker can determine a whole range of things. How
much profit will such a project make? What is the minimum time frame in which we can complete
this project? And ultimately, whether or not the project will succeed or not. It is a problem
of interest to a wide range of industries, be it o�ce workers just allocating simple tasks or large
scale computer mainframes handling thousands of terabytes of data. Here are some case studies
of interest:

• Public Transport: Consider a scenario where you are a public transport provider. You
have to serve a variety of di↵erent routes of di↵erent lengths and capacity. In order to provide
such a service you will need to invest in a fleet of vehicles. the trick is deciding which vehicles
and how many types of each vehicle you will invest in. for example, when it comes to buses,
TfL operate ten types of bus [5], which all may have the same manual labour cost (one driver)
but all have di↵erent capacities and operating costs depending upon what type of fuel they
run on, which they need to optimise for what is of interest to them.

This then opens up a wider question, depending on our objectives, what specific aspects of
the system we want to optimise, which can often result in a conflict of interests. For example,
a private provider’s main aim is to make as much money from the system as possible, whereas
a public provider will be trying their best to ensure there is minimum delay and the maximum
number of passengers can be accommodated for across the system as a whole. Such di↵erences
in objectives has brought up a lot of debate regarding the public transport system in the
UK, especially the privatisation of rail and it is up for debate whether such services should
be made public again [6].

• High Frequency Trading: In the traditional Stock Market, the buying and selling of stocks
was conducted on busy trade floors with loud traders directing their order at one another
these. Modern developments have the rise of the internet and advances in technology, these
trades are often conducted by computers, using complex algorithms capable of performing
many trades within a single second. This process is known as High Frequency Trading (HFT).
This a process which relies on the speed of the whole process allowing the completion of
millions of transactions with small marginal profits in order to gain the most from the system.
[7]. Gaining even a millisecond advantage over competitors can result in an extreme growth
in profits. If we are given a reliable model for how a stock will behave in the future, optimised
allocations will take full advantage of this.

• Computer Processors: Online computer servers are responsible transfer large quantities
of data across large scale systems. They need to be able to transfer appropriate amounts
of information in an as e�cient way as possible to not only minimise the delay across the
system but also maximise profits of the service provider.

These situations present two main problems to solve:

• Resource Allocations: This is where we look to optimise the allocation of our load across
the whole system. That is how much work we provide each server with. We look to choose
an allocation such that we are able to minimise our overall or average costs across our system
This cost may be in the form of delay or computational cost to process the load.

• Investment Strategies: Once we have our optimal allocation, we now wish to have an
optimal set of servers to accommodate for this allocation. We need to invest in servers in
such a way that we can minimise our total operating costs across all servers and maximise
the profits obtained from the system.

The aim of this paper is to develop strategies to tackle these problems using many aspects of
queuing theory and a wide range of optimisation techniques. We shall firstly focus upon the
mathematical framework and look to generalise already established results. This shall be done to
produce mathematical models for a range of problems which we shall aim to solve.
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Chapter 2

Literature Review and Theoretical
Background
2.1 Queuing Theory

Queuing Theory is an area of mathematics often used in Operational Research looking into
queues[8]- a process which require a set time waiting and a set time being served before the
process can be completed. It originates from the research of Agner Krarup Erlang, a Danish En-
gineer who used it when he set about creating models for the Copenhagen Telephone Exchange.[9]
Erlang noted that queues can exhibit phase-transition like behaviour and how the behaviour of
the queue is determined heavily by the arrival and service rates of the system. Since then, these
models have been used for a wide variety of useful applications, such as modelling the spread of
disease in epidemiology[10][11].

So what exactly is a Queuing System? The premise of these models is follows the following
intuition. Imagine when you got to shop to by something. Once we have decided what we want to
buy, we have to wait in a queue to get served, then get served and then we can leave the system.
The Queuing System is known as the period where you are waiting in the queue and being served.
This is the part of the system that the shop can optimise to either reduce Delay time or increase
the number of customer they are able to serve in a certain time period.

Figure 2.1: A diagram depicting the Queuing System- with customers entering the system into the
waiting line, proceeding to get served before finally exiting the system

This basic concept has been expanded upon further in order to account for various factors such
as the number of servers, the distribution of arrival service rate and the capacity of the queue.

The aim of the paper is to focus on using these models to determine the total time spent in the
system, as well as the costs they may incur. In order to do so, we will need to focus on some key
results as well as the foundations of Queuing Theory. When it comes to queuing theory, the two
main quantities to consider are:

• �: The Arrival Rate into the System. This determines the flow into the system and is usually
a random variable following a specified distribution.

• µ: The Service Rate of the server of the System. This controls the flow out of the system
and like with the Arrival Rate, this too is a random variable following a distribution

• ⇢ = �
µ : The Load of the System. In order for the system to remain stable, we need to ensure

that the load remains less than 1. Otherwise, if this bound is exceeded we don’t have a stable
system. When we say that a system is stable, this implies that we can always progress to a
scenario where there is no longer a queue have a queue. So a load exceeding that exceed 1
implies the queue never empties- which is a very undesirable scenario to be avoided.[12]

With these quantities we are able to predict a variety of properties of the model. As previously said,
we want to focus on minimising the total time spent in the system. To do this we need to refer to
two of the main results in Queuing Theory: Little’s Law[13][14] and the Pollaczek–Khinchine
Formula[15] [16]:

Theorem 2.1 (Little’s Law). For a queue with an average arrival rate of � and the average time
spent in the system is W , the average number in the system, L, is given by:

L = �W (2.1)
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2.2. OPTIMISATION METHODS

Theorem 2.2 (Pollaczek–Khinchine Formula). The formula states that the mean queue length, L,
is given by:

L = ⇢+
⇢

2 + �

2 Var(µ�1)

2(1� ⇢)
(2.2)

By combining these two formulae together we see that the total time spent in the system is given
by:

W =
⇢+ �µVar(µ�1)

2(µ� �)
+ µ

�1 (2.3)

In order to model a variety of systems, we have di↵erent assumptions for each system and these
are signified with the use of Kendall’s Notation[17]. This tells various properties of the queue, such
as the distribution of service and arrival rates, the capacity of the queue, the number of servers in
the system and so on. For example, the most simple model, the M/M/1 queue signifies a single
server queue with an exponential arrival and service rates.

2.2 Optimisation Methods

When it comes to optimising such processes, there are a variety of techniques used such as linear
and geometric programming [18]. We shall go into detail the main methods which will be used in
this paper, firstly in a continuous setting, then that of a discrete setting.

2.2.1 Continuous Optimisation

A very popular method of convex optimisation is the usage of the Lagrange Multiplier Method
[19]. It is used to optimise some objective functions in respect to various constraints composed on
the system. This involves solving a system of the form:

Maximise/Minimise

f(x)

in respect to

gi(x) = 0 8i

However this only works for when we have strictly tight constraints. We may have a system where
we are dealing with inequality constraint of the form:

Maximise/Minimise

f(x)

in respect to

gi(x) = 0 8i
hj(x)  0 8j

This where we have to use what is know as the Karush Kuhn Tucker Conditions, a set of
conditions used to optimise such systems, firstly proved in the Master’s thesis of William Karush
in 1939 but published first by Harold W. Kuhn and Albert W. Tucker in 1951[20][21].

Theorem 2.3 (Karush Kuhn Tucker Conditions). Suppose that the objective function f : Rn !
R and the constraint functions gi : Rn ! R and hj : Rn ! R are continuously di↵erentiable at a
point x⇤. If x⇤ is a local optimum and the optimisation problem satisfies some regularity conditions,
then there exist constants µi (i = 1, . . . ,m) and �j (j = 1, . . . , `), called KKT multipliers, such
that:

• Stationarity:

For maximising f(x):

rf(x⇤) =
mX

i=1

µirgi(x
⇤) +

X̀

j=1

�jrhj(x
⇤),

• Primal feasibility:
gi(x

⇤)  0, for i = 1, . . . ,m

hj(x
⇤) = 0, for j = 1, . . . , `
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2.2. OPTIMISATION METHODS

• Dual feasibility :
µi � 0, for i = 1, . . . ,m

• Complementary slackness :

µigi(x
⇤) = 0, for i = 1, . . . ,m.

This is what was primarily used to obtain the solutions in [4], and we too shall be using it to obtain
our own solutions. This has proven to be a popular method in economics, as it enables to optimise
problems without exhausting all of our resources[22].

2.2.2 Discrete Optimisation

In this paper, we shall also encounter cases where the units we are dealing with are not entirely
continuous. As a result, methods like the KKT conditions may not translate well when optimis-
ing for discrete cases. So instead di↵erent methods are required to optimise functions. These
may include Discrete Hamiltonian’s[23] or plane cutting[24]. However we shall be using a more
algorithmic approach similar to Simulated Annealing.

Figure 2.2: Pseudo-Code for the Simulated Annealing algorithm[25]

It is a method which was first proposed in [26]. Annealing is the process of repeatedly heating
and cooling a material till it reaches it’s molecules reach an ”Optimal Configuration”. Whilst
initially just used to reach the ground state (minimal energy in its solid state) of a material, it
has also become a very useful tool in discrete optimisation and help avoid large combinatorial
problems[27].
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2.3. OPTIMAL ROUTING POLICY

2.3 Optimal Routing Policy

Now that we have covered the groundwork we require to tackle our problem, we shall be summarise
a paper [4] which deals with the first half of our problem, Resource Allocation. In this paper, the
authors look to minimise the average delay time (The time spent in the system) across a network
of N servers, each modelled by the previously discussed M/M/1 queue. For each individual server
i, we have a delay of:

Di =
1

µi � �i

The paper aims to optimise the average delay time across the whole network by minimising the
objective function:

D =
1

�

NX

i=1

�iDi =
1

�

NX

i=1

�i

µi � �i

in respect to the constraints:

� =
NX

i=1

�i

�i > 0 i = 1, 2, .., N

By using Lagrangians and the KKT Conditions, they attained the following optimal service rate:

�

⇤
i = max

⇣
µi �

r
µi

��0
, 0
⌘

Which gave this optimal delay rate:

DOPT =
1

�

NX

i=1

(
p
��0µi � 1)⇥(

p
��0µi � 1)

It is di�cult to conceptualise the di↵erence analytically. However, we can derive a solution numer-
ically. These reproducible result is shown in Figure 2.3. The main very counter intuitive result of
this paper is the high number of idle resources for a wide range of loads. You some how reduce time
spent in the system by giving servers no work to do! This is an interesting result worth expanding
upon and generalising for a wider range of contexts, including the Economic Extension suggested
at the end of the paper.
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Figure 2.3: A graph depicting the Number of Idle Servers in the System(Blue), the Standard Delay
(Orange) and the Optimised Delay (Red) with a set of Uniformly Distributed Servers
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2.3. OPTIMAL ROUTING POLICY

2.3.1 Similar Problems and further literature review

Upon further research into the issues regarding the applications of this problem, there were a
variety of interesting studies done into various aspects, but nothing quite answers the problems
of both resource allocation and investment strategies using idle resources. These has been plenty
of work done looking into minimising delay times across wide scale networks, [28][18]. A wide
variety of queuing functions have been looked into, including the G/G/1 queue [29], which is the
most generalised for of an M/M/1 queue. They have looked at minimising the total delay rather
than the average delay as seen in [4]. However the result of [4], where we allocate no resources
at all to certain servers, has seemingly yet to have been replicated. So for completion, it is worth
generalising the previous model for more general queues to provide a link in this literature.

In regards to Investment strategies, the usage of queuing theory [30] and wide scale networks
[31] have been used in industrial economics for some time now. For example, [32] looks into using
the simulated annealing algorithm in order to choose which processing units should be included
into a system.

When it comes to what we do on this paper, based upon what has already been achieved, due
to the lack of follow up work on the approach taken in [4], which took research into a unique
direction, we should continue along this path developing it further, with the help of already known
theories and by the end, we should be at a stage where we can then link this all back up with
already established work.
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Chapter 3

Optimal Resource Allocation
3.1 Altering the distribution of servers

The first extension on [4], is to see what di↵ers as we change the distribution of µi’s across the
whole system, and how the results di↵er as we alter the parameters. In [4], the servers were
uniformly distributed in the numerical results, so it would be interesting if these results alter if
the distribution were to be changed. We decided to use an Exponential distribution and a Gamma
distribution. The results can be observed in the following figures:

• Exponentially Distributed Servers: The first thing to notice here is that the curve for
idle servers is a lot smoother, reflecting the exponential nature of their distribution. However,
as we change the mean of the distribution, there is no change in the number of idle servers
and the delay times just scale down in respect to this.

Figure 3.1: The first graph (Top) indicates how the delay and distribution of idle servers vary if

µi
i.i.d⇠ Exp(1) and the second graph shows the same for µi

i.i.d⇠ Exp(p) for p = 1, 2, 5, 10

8



3.1. ALTERING THE DISTRIBUTION OF SERVERS

• Gamma Distributed Servers: Because of the relation to the exponential distribution,
the Gamma Distribution shares a very similar shape. However, as we change the shape
parameter of the distribution, we see that the number of idle servers in fact decreases. This
is because, as you increase the parameter, the distribution becomes more sharper around a
certain area, thus the distribution of servers become a lot more uniform and concentrated
around the mean, causing the idle resource curve to ’collapse’, as the powers of the resources
are a lot closer together, resulting in less ’comparatively powerful’ resources.

Figure 3.2: The first graph (top) indicates how the delay and distribution of idle servers vary if

µi
i.i.d⇠ Gamma(1, 1

2 ) and the second graph shows the same for µi
i.i.d⇠ Gamma(p, 1

2 ) for p = 1, 2, 5, 10
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3.2. GENERALISING TO DIFFERENT DELAY FUNCTIONS

3.2 Generalising to di↵erent Delay Functions

Next we will look to generalise the result on a system with a wider class of queuing systems. The
M/M/1 queue looks at a queues with an exponential arrival and service rate. In our previous
system, we assumed all the servers followed this discipline, but there are other restrictions we can
put onto these queue. We shall be generalising the result for other distributions, with their own
delay functions, and see if the result still holds up.

• M/D/1 Queues- This a queue with a deterministic service rate (It is fixed and not treated
as a random variable)

Di =
1

µi
+

�i

2µi(µi � �i)
(3.1)

• M/G/1 Queues- This is the overall generalisation of the service rate and provides the delay
given the service rate, µi, follows any given distribution. This in fact reduces to from the
Pollaczek-Khinchin formula and Little’s Law from equation (2.3):

Di = E[µ�1
i ] +

�iE[µ�2
i ]

2(1� ⇢i)
(3.2)

3.2.1 Generalising the methodology

Before doing that, let’s generalise the original optimisation problem:

Minimise D =
1

�

NX

i=1

�iDi where Di =
f(⇢i)

µi

In respect to the constraints:

� =
NX

i=1

�i

�i � 0 i = 1, 2, .., N

�i  µi i = 1, 2, .., N

Notice the introduction of the new constraint �i  µi. This is to ensure no server is dealing
with overcapacity. This constraint isn’t needed for the M/M/1 delay function, since it diverges at
maximum load, and can be omitted in such cases. These equations form the following Lagrangian:

L(�i, i,�i,�0) = D � �0(��
NX

i=1

�i)�
NX

i=1

�i�i �
NX

i=1

 i(µi � �i) (3.3)

Note that �iDi =
�
i

µ
i

f(⇢i) = g(⇢i) This Lagrangian provides us with the KKT Conditions:

@L
@�i

=
1

�

@g

@�i
� �0 � �i +  i = 0 i = 1, 2, .., N

@L
@�0

= ��
NX

i=1

�i = 0

�i�i = 0 �i � 0 i = 1, 2, .., N

 i[µi � �i] = 0 µi � �i i = 1, 2, .., N

Now consider the three possible cases:

1. The Server is idle: �i = 0, �i 6= 0 and  i = 0

2. The Server is doing work: �i 2 (0, µi), �i = 0 and  i = 0

3. The Server is working at maximum load: �i = µi, �i = 0 and  i 6= 0
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3.2. GENERALISING TO DIFFERENT DELAY FUNCTIONS

These reduce @L
@�

i

into the following cases:

1.
@L
@�i

=
1

�

@g

@�i
� �0 � �i = 0

2.
@L
@�i

=
1

�

@g

@�i
� �0 = 0

3.
@L
@�i

=
1

�

@g

@�i
(1)� �0 +  i = 0

Equations 1 and 3 provide you with the values of the KKT Multipliers �i and  i, but these are of
little interest to us. Equation 2 is what we are interested in and we solve it in respect to �i. We
shall denote this solution as �oi (�0, µi,�). Thus this results in the optimal load allocation being as
follows:

�

⇤
i =

8
<

:

0 if �oi (�0, µi,�)  0
�

o
i (�0, µi,�) if �oi (�0, µi,�) 2 (0, µi)

µi if �oi (�0, µi,�) � µi

} (3.4)

In order to retrieve the Lagrangian Multiplier, �0, we substitute the solutions for �⇤i into the
constraint:

� =
NX

i=1

�i (3.5)

=
NX

i=1

�

o
i (�0, µi,�)⇥(�oi (�0, µi,�))⇥(�oi (�0, µi,�)� µi) + µi⇥(µi � �

o
i (�0, µi,�)) (3.6)

This equation can be solved numerically. This now gives us everything to obtain an optimal delay
function:

D

⇤
OPT =

NX

i

g

⇣
�

o
i (�0, µi,�)

µi

⌘
⇥(�oi (�0, µi,�))⇥(�oi (�0, µi,�)�µi)+g(1)⇥(µi��oi (�0, µi,�)) (3.7)

The number of units which are Idle and at Full Capacity are given by:

N0 =
NX

i=1

⇥(��oi (�0, µi,�)) NF =
NX

i=1

⇥(�oi (�0, µi,�)� µi) (3.8)

We shall now use this to find the optimal resource allocation of the previously discussed queues as
well as other other potential candidate functions to be minimised.

11



3.3. USING A QUADRATIC DELAY/COST FUNCTION

3.3 Using a Quadratic Delay/Cost Function

Before handling any of the real queues, it is worth testing out the above methodology on a gener-
alised cost function, in the form of a quadratic. This is of use for us, as we find later many of the
other formulae break down into a quadratic equation to be solve. Hence, let our delay function be:

Di =
1

µi
[d0 + d1⇢i + d2⇢

2
i ]

This gives the following form for g(⇢i):

g(⇢i) = d0⇢i + d1⇢
2
i + d2⇢

3
i

@g

@�i
=

d0

µi
+

2d1⇢i
µi

+
3d2⇢2i
µi

=) @L
@�i

=
1

�µi
[d0 + 2d1⇢i + 3d2⇢

2
i ]� �0 +  i � �i = 0

Apply KKT to obtain the explicit value of the KKT Multipliers:

(i)
@L
@�i

=
d0

�µi
� �0 � �i = 0 =) �i =

d0

�µi
� �0 (3.9)

(iii)
@L
@�i

=
1

�µi
[d0 + 2d1 + 3d2]� �0 +  i = 0 =)  i = �0 �

1

�µi
[d0 + 2d1 + 3d2] (3.10)

Apply KKT to obtain an optimal value of ⇢i:

(ii)
@L
@�i

=
1

�µi
[d0 + 2d1⇢i + 3d2⇢

2
i ]� �0 (3.11)

=) 3d2⇢
2
i + 2d1⇢i + d0 � ��0µi = 0 (3.12)

By solving this quadratic, we attain the optimal resource allocation:

�

o
i (�0, µi,�) =

�d1 +
p
d

2
1 � 3d2(d0 � ��0µi)

3d2
µi

Thus:

�

⇤
i =

8
><

>:

0 if �oi (�0, µi,�)  0
�d

1

+
p

d2

1

�3d
2

(d
0

���
0

µ
i

)

3d
2

µi if �oi (�0, µi,�) 2 (0, µi)
µi if �oi (�0, µi,�) � µi

}

In order to obtain the Lagrange Multiplier �0, substitute this result into the Equation (3.7) from
the previous section. Our optimised delay is now:

D

⇤ =
1

�

NX

i=1

�i[d0 + d1⇢
⇤
i + d2⇢

⇤2
i ] (3.13)

= 1

�

P
N

i=1

�d

1

+

p
d

2

1

�3d

2

(d

0

���

0

µ

i

)

3d

2

⇥

⇣
�d

1

+
p

d2

1

�3d
2

(d
0

���
0

µ
i

)

⌘
⇥

⇣
3d

2

+d
1

+
p

d2

1

�3d
2

(d
0

���
0

µ
i

)

⌘
(3.14)

+[d
0

+d
1

+d
2

]⇥

⇣p
d2

1

�3d
2

(d
0

���
0

µ
i

)�d
1

�3d
2

⌘
(3.15)

The Number of resources which are either idle or operating at full capacity are given by:

N0 =
NX

i=1

⇥
⇣
d1 �

q
d

2
1 � 3d2(d0 � ��0µi)

⌘
(3.16)

NF =
NX

i=1

⇥
⇣q

d

2
1 � 3d2(d0 � ��0µi)� d1 � 3d2

⌘
(3.17)
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3.3. USING A QUADRATIC DELAY/COST FUNCTION

3.3.1 Numerical Results

Likewise with the result from [4], this solution is indeed optimal and yet again we have set amount
of Idle resources for low loads. However, due to the bounded nature of the Quadratic function,
there is also a region of servers operating at full capacity. In fact, we have a regime present for
loads exceeding 0.6, where we have a collection of servers which are both idle and running at full
capacity. This suggests there to be some ine�ciency with the servers we have present and may
suggest that there could be a better choice of what servers to have, depending on the load the
system is expecting to receive. However, despite this being the case, this still gives us an optimal
solution, further expanding upon this idle worker paradox.

Figure 3.3: A depicting the number of Idle (Blue) and Full (Red) servers in the system as well as
the optimised (Yellow) and Ad-Hoc (Purple) delay functions.

Figure 3.4: A graph depicting how the value of the Lagrange Multiplier, �0, alters as we change
the load.
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3.3. USING A QUADRATIC DELAY/COST FUNCTION

3.3.2 Changing the distribution

If we change the distribution of servers, we get some interesting results. Figure 3.5 replicates the
numerical results shown in Figure 3.3, but this time sing Exponentially and Gamma distributed
servers.

Figure 3.5: The first graph (top) indicates how the delay and distribution of idle servers vary if

µi
i.i.d⇠ Exp(1) for and the second graph shows the same for µi

i.i.d⇠ Gamma(1, 0.5)

If we to have a set of exponentially distributed servers, we notice even with lower loads, there
will already be a set amount of full servers, so the number of full servers steadily increases with
the load. In the case of Gamma distributed servers, we notice a similar pattern in regard to idle
servers, but also note how the optimal delay time is now considerably lower than the Ad Hoc
Delay time. This is perhaps not only to do with the exponential nature but also the shape of the
distribution having a sharper peak around a certain region.
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3.4. QUEUES WITH EXPONENTIAL DELAY FUNCTIONS

3.4 Queues with Exponential Delay Functions

Now we shall look at a a Queue with an Exponential Delay function:

Di =
A0

µi
e

A
1

⇢
i

This gives the following form for g(⇢i):

g(⇢i) = A0⇢ie
A

1

⇢
i

@g

@�i
=

A0

µi
e

A
1

⇢
i (1 +A1⇢i)

=) @L
@�i

=
A0

�µi
e

A
1

⇢
i (1 +A1⇢i)� �0 � �i +  i = 0

Apply KKT to obtain the explicit value of the KKT Multipliers:

(i)
@L
@�i

=
A0

�µi
� �0 � �i = 0 =) �i =

A0

�µi
� �0 (3.18)

(iii)
@L
@�i

=
A0

�µi
e

A
1 (1 +A1)� �0 +  i = 0 =)  i = �0 �

A0

�µi
e

A
1 (1 +A1) (3.19)

Apply KKT to obtain an optimal value of ⇢i:

(ii)
@L
@�i

=
A0

�µi
e

A
1

⇢
i (1 +A1⇢i)� �0 (3.20)

=) e

A
1

⇢
i (1 +A1⇢i) = A

�1
0 ��0µi (3.21)

This is a fixed point equation left for us to solve:

⇢i = A

�1
1

�
A

�1
0 ��0µie

�A
1

⇢
i � 1

�
(3.22)

This needs to be solved numerically in conjunction with the identity:

� =
NX

i=1

�i

In order to obtain our optimal allocation, �⇤i , as well as the Lagrange Multiplier, �0. Whilst we
won’t go on to solve this system here, we have shown that this is yet another system for which an
optimal result can be obtained for.

One thing to note, regarding the quadratic and exponential functions, is that they’re not exactly
a realistic delay functions. This is because the nature of queues normally results in a divergence as
⇢! 1, in order to maintain stability, and thus don’t need to account for any additional constraints
to account for this. However, think of them as cost functions that a firm may incur upon a process
which they are running. These functions shall be returned to in the next chapter. But first, we
shall return to solving the problem with the standard delay formulae mentioned previously for the
M/D/1 and M/G/1 queues.
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3.5. THE M/D/1 QUEUE

3.5 The M/D/1 queue

Now we look to the case of the M/D/1 Queue, This is very similar to the M/M/1 queue, but
instead of having each µi treated as an exponentially distributed random variable, we have it
being treated as a constant.1 While this may not seem like it will cause an issue, it does since a
M/D/1 has a di↵erent Delay function:

Di =
1

µi
+

�i

2µi(µi � �i)
(3.23)

The optimisation problem becomes to solve the following equation, subject to the usual constraints.

1

�

NX

i=1

�iDi =
1

�

NX

i=1

�i

µi
+

�

2
i

2µi(µi � �i)
(3.24)

Figure 3.6: A graph depicting the delay for a system of M/D/1 Queues, using an Ad Hoc Solution
(Yellow) and substituting in the Optimal solution for a system of M/M/1 queues. The Blue crosses
indicate the number of Idle resources.

By observing Figure 3.6, we see that our current solution is no longer optimal. So we are now
left to find the new optimal. We return to the Lagrangian equation for the non trivial solution for
�

⇤
i :

@L
@�i

=
1

�µi


1 +

2�i
2(µi � �i

+
2�2i

2(µi � �i)2

�
� �0 = 0 (3.25)

=) �iµi

(µi � �i)2
� �µi�0 + 1 = 0 (3.26)

This now form a quadratic equation that is easy to solve:

µi

�µi�0 � 1
�i = (µi � �i)

2 (3.27)

�

2
i �

✓
2µi +

µi

�µi�0 � 1

◆
�i + µ

2
i = 0 (3.28)

1
It is worth pointing out here that for D/D/1 (ie both service and arrival rates are deterministic) queue, when

both arrival AND Service rate are deterministic, as long as �i < µi, there will be No Delay in the system at all

[33]! It is the randomness in service and arrival rate that cause delays in queues.
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3.6. THE M/G/1 QUEUE

By quadratic formula:

�

o
i (�0, µi,�) =

⇣
2µi +

µ
i

�µ
i

�
0

�1

⌘
�
r⇣

2µi +
µ
i

�µ
i

�
0

�1

⌘2
� 4µ2

i

2
(3.29)

=

✓
µi +

µi

2(�µi�0 � 1)

◆
� µi

2

s
1

(�µi�0 � 1)2
+

4

�µi�0 � 1
(3.30)

We are now able to see that the optimal resource allocation in this instance is:

�

⇤
i = max {0,�oi (�0, µi,�)} (3.31)

Like with the M/M/1 queues, the value of �0 can be derived numerically by solving the equation:

� =
NX

i=1

�i

Thus we can now state:

Theorem 3.1. For a system of M/D/1 queues, the optimal resource allocation is:

�

⇤
i = max

(
0,

✓
µi +

µi

2(�µi�0 � 1)

◆
� µi

2

s
1

(�µi�0 � 1)2
+

4

�µi�0 � 1

)
(3.32)

This gives us an optimal delay of:

DOpt =
1

�

NX

i=1

�

⇤
i

µi
+

�

⇤2
i

2(µi � �

⇤
i )

(3.33)

3.6 The M/G/1 queue

Now we move onto an overall generalisation of the whole process. The M/G/1 queue looks at
queues with a generalised distribution for the service rate of the servers.

Di = E[µ�1
i ] +

�iµiE[µ�2
i ]

2(µi � �i)
(3.34)

Thus our new objective function is:

D =
1

�

NX

i=1

�iE[µ�1
i ] +

�

2
iµiE[µ�2

i ]

2(µi � �i)
(3.35)

The Lagrangian to solve to optimise this system is given by:

L(�i,�i,�0) = D � �0

 
��

X

i

�i

!
�
X

i

�i�i (3.36)

The first desired first order condition to solve it is:

@L
@�i

=
1

�


E[µ�1

i ] +
2�iµiE[µ�2

i ]

2(µi � �i)
+

2�2iµiE[µ�2
i ]

2(µi � �i)2

�
� �0 = 0 (3.37)

=) �iµ
2
iE[µ�2

i ]

(µi � �i)2
+ E[µ�1

i ]� ��0 = 0 (3.38)

This can be re arranged into a quadratic in respect to �i:

µ

2
iE[µ�2

i ]

��0 � E[µ�1
i ]

�i = (µi � �i)
2 (3.39)

�

2
i �

✓
µ

2
iE[µ�2

i ]

��0 � E[µ�1
i ]

+ 2µi

◆
�i + µ

2
i = 0 (3.40)
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3.7. WHERE TO GO NEXT?

By the Quadratic formula we now get:

�

o
i (�0, µi,�) =

⇣
µ2

i

E[µ�2

i

]

��
0

�E[µ�1

i

]
+ 2µi

⌘
�
r⇣

µ2

i

E[µ�2

i

]

��
0

�E[µ�1

i

]
+ 2µi

⌘2
� 4µ2

i

2
(3.41)

=
µ

2
iE[µ�2

i ]

2(��0 � E[µ�1
i ])

+ µi �
µi

2

s✓
µiE[µ�2

i ]

��0 � E[µ�1
i ]

◆2

+
4µiE[µ�2

i ]

��0 � E[µ�1
i ]

(3.42)

Thus we now have a fully generalised formula for the system presented in [4]:

Theorem 3.2. For a system of M/G/1 queues, the optimal resource allocation is:

�

⇤
i = max

8
<

:0,
µ

2
iE[µ�2

i ]

2(��0 � E[µ�1
i ])

+ µi �
µi

2

s✓
µiE[µ�2

i ]

��0 � E[µ�1
i ]

◆2

+
4µiE[µ�2

i ]

��0 � E[µ�1
i ]

9
=

; (3.43)

This gives us an optimal delay of:

DOpt =
1

�

NX

i=1

�

⇤
iE[µ�1

i ] +
�

⇤2
i E[µ�2

i ]

2(1� ⇢

⇤
i )

(3.44)

3.7 Where to go next?

So far we have managed to fully generalise the system presented in [4] to a wider class of queuing
functions thanks to the most recent result regarding a system of M/G/1 queues shown in Theorem
3.2. We have also shown that the methodology can be used when it comes to minimising cost
functions for these resource allocation problems. This leads onto the Economic Extension of this
problem, where now that we have optimised the allocation of our resources, we wish to optimise
the processors at our disposal to process such resources.
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Chapter 4

Optimal Investment Strategies
Having investigated the idea of resource allocation in such systems, it is time consider the demand
side of the problem- how do we e↵ectively choose the servers we have in the system? In order to
do so, initially it is worth looking more into the extension proposed at the end of [4] and look to
build upon this further.

4.1 An Economic Problem

Suppose we have obtained an optimised delay/cost function, D(�,�⇤|µ), where � is a given load, µ
is given set of resources we have at out disposal and �⇤ is our optimal allocation of resources across
the system. Now assume the load follows a distribution p(�). This is the pdf of the anticipated
loads over a lifetime of investments. The resources we have are all of a specific type ↵ = 1, 2, ..., A,
where µi = µ↵ is resource i is of type ↵. As a result we can use this to calculate the expected
profits from our investments:

P (µ) =

Z
d�p(�)[r��D(�,�⇤|µ)] (4.1)

where, r is the given Revenue Rate from our investment. For simplicity, we shall assume this rate
is constant, which we shall discuss in more detail later on. The aim of this problem is to maximise
the revenue we generate by optimising the resources we use. This will have to be in respect to
Budgetary Constraint: X

i

L(µi)  B (4.2)

where L(µi) is the cost to use each resource µi and B is the total budget we have available, which
we can not exceed. Within this setup, we can assess the following:

• What is the optimal allocation of µi’s we can use in order to maximise our Revenue?

• What is the minimum budget required in order to setup such a business?

• What is the maximum load we can allow into the system to maximise our profits?

Let the probability distribution follow a Gamma Distribution, as this allows us to extend this
result to a wide family of distributions by adjusting the parameters:

p↵,�
0

(�) =
�

↵�1

�

↵
0�(↵)

e

� �

�

0

As a result this shall lead to the usage of Incomplete Gamma Functions and their properties:

�(s, x) =

Z 1

x

t

s�1 e�t dt (4.3)

�(s, x) =

Z x

0
t

s�1 e�t dt (4.4)

Since we previously used numerical results in order to obtain the values of our Lagrange multiplier
previously, we won’t always be able to rely on evaluating integral analytically. Instead we will
have to use Numerical methods. Specifically, we shall be relying on Gauss Lauguerre and Lengedre
Integration methods[34]. Whilst they will only provide exact results for Lauguerre and Legendre
Quadratic equations, they provide a good enough approximation to use in our results. They involve
evaluating the integral with the use of an appropriate weight function, !(x), and rearrange the
integral in such a way that it can be approximated by:

Z b

a

!(x) f(x) dx ⇡
X

i

!(xi) f(xi) (4.5)
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4.1. AN ECONOMIC PROBLEM

4.1.1 Using DOPT as a cost function

Our first step to solving this problem is to evaluate the above expression for the revenue we are
expected to generate. We shall initially be using the total delay across the system as our cost
function:

D(�0,�
⇤|µ) =

NX

i=1

1

µi � �

⇤
i

=
NX

i=1

(
p
�0µi � 1)⇥(

p
�0µi � 1) (4.6)

Not is this is slightly di↵erent to the delay function form [4], since we are no longer looking at
average delay across the system, but more so the total delay. We evaluate the integral as follows:

P (µ) =

Z
d�p(�)

h
r��D(�0,�

⇤|µ)
i

(4.7)

= E
h
r��D(�0,�

⇤|µ)
i

(4.8)

= rE[�]� E
h
D(�0,�

⇤|µ)
i

(4.9)

= rE[�]� E
h NX

i=1

(
p
�0µi � 1)⇥(

p
�0µi � 1)

i
(4.10)

= rE[�]�
NX

i=1

Z
d�p(�)(

p
�0µi � 1)⇥(

p
�0µi � 1) (4.11)

With the usage of the Gamma Distribution and a Laguerre Polynomial Integral. We are able to
evaluate the integral as follows:

Z
d�p(�)(

p
�0µi � 1)⇥(

p
�0µi � 1) =

Z
d�

�

↵�1

�

↵
0�(↵)

e

� �

�

0 (
p
�0µi � 1)⇥(

p
�0µi � 1) (4.12)

=
1

�0

Z
d�

⇣
�
�
0

⌘↵�1
e

� �

�

0

�(↵)
(
p
�0µi � 1)⇥(

p
�0µi � 1)

(4.13)

Here we let our weight function be

!(x) =
x

↵
e

�x

�(↵+ 1)

Thus, by Gauss-Laguerre Quadrature, we can say that:

1

�0

Z
d�

⇣
�
�
0

⌘↵�1
e

� �

�

0

�(↵)
(
p
�0µi � 1)⇥(

p
�0µi � 1) =

Z
dx!(x)(

p
�0µi � 1)⇥(

p
�0µi � 1)

(4.14)

⇡
X

x

!(x)(
p
�0µi � 1)⇥(

p
�0µi � 1) (4.15)

This is a function which can hence obtain numerically. Our expected revenue from this system is:

P (µ) = r�0↵�
NX

i=1

X

x

!(x)(
p
�0µi � 1)⇥(

p
�0µi � 1)

The next aim from here would be to maximise this Expected Revenue in respect to the budget
constraint. However, before going any further, I think it is worth questioning whether this Optimal
Delay function is a suitable cost function. Whilst it takes into the account the costs created by
’ine�ciency’ in the system, it fails to take into account the wasted cost on idle resources, the fact
more powerful resources cost more to operate and so on. So for now it is best to take a step back
and formulate a more realistic cost function.
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4.2. DERIVING A COST FUNCTION

4.2 Deriving a Cost Function

When we evaluated this Revenue function above, we directly used the Optimal Delay function as
a proposed Cost Function. However, as previously discussed, this is not the most realistic function
to use. It may make sense to have a cost function of the form:

Ci(�,�i, µi) = f0(µi) + f1(⇢i) (4.16)

Here, f0(µi) is the cost incurred by the delays in the system and would like it to be convex in order
to get a unique and optimal solution. To account for more powerful units costing more to operate,
we want f0(µi) to be increasing in respect to µi (ie df

0

dµ
i

> 0). When we have f1(⇢i) is the cost

incurred by the processing power of the system such that f(⇢i) ! 0 as �i ! 0 and it is inversely
proportional to µi- a more powerful server incurs a lower cost per computational load. We shall
compare these results with the onto using the resource allocation a proposed in [4] and how this
a↵ects the profits of a firm. The cost function for the whole system is:

C(�,�,µ) =
NX

i=1

Ci(�) (4.17)

=
NX

i=1

f0(µi) + f1(⇢i) (4.18)

Note that � = (�1,�2, ...,�N ) denotes the vector representing the allocation of resources across
the system (It is not the same �, which is jsut the total load in the system). Let’s also assume
that the system is made in such a way that it can only deal with a set maximum load, �Max. The
system can make a fixed amount of revenue o↵ any load below this margin, but can’t process any
excess, thus incurring some sort of penalty cost on these lost profits. The full profit function for
the system is then given as:

P (µ) =

Z �
Max

0
d�p(�)

"
r��

NX

i=1

f1(⇢i)

#
�

NX

i=1

f0(µi)�
Z 1

�
Max

d�p(�)P [�� �Max] (4.19)

Here, P denotes the penalty cost of being unable to utilise the full load. Notice how the f0(µi)
is outside of the integral. This is because it is independent of the load received. Let CRun =PN

i=1 f0(µi) dente the full baseline costs of the operation. In general:

P (µ) =

Z �
Max

0
d�p(�)

"
r��

NX

i=1

f1(⇢i)

#
�

NX

i=1

f0(µi)�
Z 1

�
Max

d�p(�)P [�� �Max] (4.20)

=

Z �
Max

0
d�p(�)

"
r��

NX

i=1

f1(⇢i)

#
� P

"Z 1

0
d�p(�) [�� �Max]�

Z �
Max

0
d(�) [�� �Max]

#
� CRun

(4.21)

=

Z �
Max

0
d�p(�)

"
r��

NX

i=1

f1(⇢i) + P [�� �Max]

#
� PE [�� �Max]� CRun (4.22)

=

Z �
Max

0
d�p(�)

"
(r + P )��

 
NX

i=1

f1(⇢i) + �Max

!#
� P (�0↵� �Max)� CRun (4.23)

=

Z �
Max

0
d�

e

� �

�

0

�(↵)

"
(r + P )

✓
�

�0

◆↵

� �Max

�0

✓
�

�0

◆↵�1

�
NX

i=1

f1(⇢i)

#
� P (�0↵� �Max)� CRun

(4.24)

=
1

�(↵)
[�0(r + P )�(↵+ 1,�Max)� �Max�(↵,�Max)]� CRun (4.25)

�
NX

i=1

Z �
Max

0
d�p(�)f1(⇢i)� P (�0↵� �Max) (4.26)
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4.2. DERIVING A COST FUNCTION

Note that once the integral
R �

Max

0 d�p(�)f1(⇢i) is evaluated analytically1, it will be in the form:

Z �
Max

0
d�p(�)f1(⇢i) =

1

�(↵)
gi(µi;✓)�(hi(↵),�Max) (4.27)

where ✓ represents the parameters of f1(⇢i),gi(µi;✓) is the function derived form the evaluated
integral and hi(↵) determines the shape of the associated incomplete Gamma function. Thus we
can express our profits as:

P(µ) = 1
�(↵)

h
�0(r + P )�(↵+ 1,�Max)� �Max�(↵,�Max)�

PN
i=1 gi(µi;✓)�(hi(↵),�Max)

i
� P (�0↵� �Max)� CRun(4.28)

In this form it is easier to see how profits behave in respect to the various parameters at play
and allows the firm to make changes such as to maximise their profits. All operating and penalty
costs as well as the distribution of incoming load may be out of their control, so they are unable
to adjust for these. However the revenue rate, r, the Maximum Load in the System, �Max and the
servers at their disposal, µi, is well in their control. It is easy to see that P (µ) is linear in respect
to r, so the obvious choice there is to set it as high as possible, which of course depends heavily
upon market limitations. However, it is the allocation of servers and maximum load are harder to
distinguish, and we shall go into more detail. But first I think it is worth evaluating this equation
with potential candidates for f0(µi) and f1(⇢i). To simplify notation, we shall use the variables
PFULL and R, where:

PFULL = P (�0↵� �Max) (4.29)

R = �0(r + P )�(↵+ 1,�Max)� �Max�(↵,�Max) (4.30)

These values are una↵ected by the type of cost function we use. We shall also be evaluating our
functions with the Ad-Hoc Allocation �i =

�
µµi.

4.2.1 Fully Linear Cost Function

For f0(µi), we shall initially be use Aµi. As for f1(⇢i), we shall simply let it equal to ⇣ �
i

µ
i

, where
⇣ is a scaling factor of the cost depending upon the load of the server. Firstly, it is simple to see
that:

CRun = A

NX

i=1

µi (4.31)

Z �
Max

0
d�p(�)f1(⇢i) = ⇣

Z �
Max

0
d�p(�)

�i

µi
(4.32)

We then evaluate f1(⇢i) alters with the Ad-Hoc Allocation, �Ad-Hoc
i = �

µµi :

⇣

Z �
Max

0
d�p(�)

�

Ad-Hoc
i

µi
=
⇣

µ

Z �
Max

0
d�p(�)� (4.33)

=
⇣

µ�(↵)

Z �
Max

0
d�

✓
�

�0

◆↵

e

� �

�

0 (4.34)

=
⇣�0

µ�(↵)
� (↵+ 1,�Max) (4.35)

Thus our overall profit is given by:

P (µ) =
1

�(↵)


R� N⇣�0

µ

� (↵+ 1,�Max)

�
� PFULL �A

NX

i=1

µi (4.36)

1
We will notice later on that it may not be able to always be evaluated analytically and numerical solutions with

no functional form will be required.
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4.2. DERIVING A COST FUNCTION

4.2.2 Fully Quadratic Cost Function

We shall now test it out for Quadratic Functions. So let f0(µi) = A0 +A1µi +A2µ
2
i and f1(⇢i) =

⇣0 + ⇣1⇢i + ⇣2⇢
2
i . Only f1(⇢i) alters as we alter the resource allocation:

f1(⇢
Ad-Hoc
i ) = ⇣0 + ⇣1

�

µ

+ ⇣2

✓
�

µ

◆2

(4.37)

Using these functions, we are able to evaluate the expected revenue under these circumstances.

CRun =
NX

i=1

A0 +A1µi +A2µ
2
i (4.38)

= NA0 +A1

NX

i=1

µi +A2

NX

i=1

µ

2
i (4.39)

Z �
Max

0
d�p(�)f1(⇢

Ad-Hoc
i ) =

Z �
Max

0
d�

�

↵�1

�

↵
0�(↵)

e

� �

�

0

 
⇣0 + ⇣1

�

µ

+ ⇣2

✓
�

µ

◆2
!

(4.40)

=

Z �
Max

0
d�

e

� �

�

0

�(↵)
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�0

✓
�

�0

◆↵�1

+
⇣1

µ

✓
�

�0

◆↵

+
⇣2�0

µ

2

✓
�

�0

◆↵+1
!

(4.41)

=
�0

�(↵)

✓
⇣0

�0
� (↵,�Max) +

⇣1

µ

� (↵+ 1,�Max) +
⇣2�0

µ

2
� (↵+ 2,�Max)

◆

(4.42)

Thus our overall profit is given by:

P (µ) =
1

�(↵)

h
R�N�0

⇣
⇣
0

�
0

� (↵,�Max) +
⇣
1

µ � (↵+ 1,�Max) +
⇣
2

�
0

µ2

� (↵+ 2,�Max)
⌘ i

�PFULL �
⇣
NA0 +A1

PN
i=1 µi +A2

PN
i=1 µ

2
i

⌘ (4.43)

4.2.3 Fully Exponential Cost Function

We shall now test it out for Quadratic Functions. So let f0(µi) = A0e
A

1

µ
i and f1(⇢i) = ⇣0e

⇣
1

⇢
i .

NX

i=1

f0(µi) =
NX

i=1

A0e
A

1

µ
i = A0

NX

i=1

e

A
1

µ
i (4.44)

Z �
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0
d�p(�)f1(⇢

Ad-Hoc
i ) =

Z �
Max
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d�p(�)⇣0e
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Z �
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↵�1
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↵
0

e
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0

e

⇣
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=
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e
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(4.47)

Let f�0 =
⇣

1
�
0

� ⇣
1

µ

⌘�1
. Thus:
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0
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⇣0
f
�0
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�(↵)�↵0

Z �
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✓
�

f
�0

◆↵�1

e

� �
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�

0 (4.49)

=
⇣0
f
�0

↵

�(↵)�↵0
�(↵,�Max) (4.50)

=
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f
�0

↵

�(↵)�↵0
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=
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1

�
0
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!↵
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4.2. DERIVING A COST FUNCTION

Now we can evaluate our profit function as follows:

P (µ) =
1

�(↵)

"
R�N⇣0

 
1

1 + ⇣
1

�
0

µ

!↵

�(↵,�Max)

#
� PFULL �A0

NX

i=1

e

A
1

µ
i (4.53)

4.2.4 Summary

We now have a family of profit functions using Ad-Hoc Allocations to optimise with the resources
at our disposal:

• Linear Costs

P (µ) =
1

�(↵)


R� N⇣�0

µ

� (↵+ 1,�Max)

�
� PFULL �A

NX

i=1

µi (4.54)

• Quadratic Costs

P (µ) =
1

�(↵)

h
R�N�0

⇣
⇣
0

�
0

� (↵,�Max) +
⇣
1

µ � (↵+ 1,�Max) +
⇣
2
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0

µ2

� (↵+ 2,�Max)
⌘ i

�PFULL �
⇣
NA0 +A1

PN
i=1 µi +A2

PN
i=1 µ

2
i

⌘

(4.55)

• Exponential Costs

P (µ) =
1

�(↵)

"
R�N⇣0

 
1

1 + ⇣
1

�
0

µ

!↵

�(↵,�Max)

#
� PFULL �A0

NX

i=1

e

A
1

µ
i (4.56)

Note, due to the modular nature of these functions, that we can mix and match these accordingly.
for example a processor may have a linear f0 but an exponential f1, but for now we shall use this
structure. So how do we go about optimising these functions? Well the main areas of interest, as
mentioned previously, would be choose an appropriate allocation of resources as well as a suitable
maximum load, �Max, in order to maximise our profits.
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4.3. OPTIMISING PROFITS

4.3 Optimising Profits

4.3.1 The relation between Maximum Load and Overall Profits

The first thing to note about our profit function is how there are several Incomplete Gamma
Functions in the system, all dependent on the value of �Max. This implies very di↵erent values for
the profit, depending upon the value we set for �Max, as can be seen in the figure below. Here,
we see that, thanks to the Incomplete Gamma functions, the Profit exhibits a sigmoidal shape in
respect to the Maximum Load the system can manage, thus creating two distinct regimes. Notice
how the function is also now concave, so usual convex optimisation methods won’t always work.
Instead, it is good to focus on looking at these distinct regimes separately and observing what
properties they may exhibit.

Figure 4.1: A graph exhibiting how profits change as we change the variable �Max ion a system
where the load follows a Gamma Distribution, Gamma(10, 20) using the Linear Profit function
(4.54)

In particular, the regimes can be distinguished as follows:

• Sometimes we could have system that is unable to keep up with the demand we receive. This
mean that we have very small �Max in relation to the distribution. under such circumstances,
the Profit becomes:

P (µ) ! �P (�0↵� �Max)� CRun (4.57)

By noticing the parameters in this case, it is evident that the firm will always be in negative
profits, and thus always losing money. This shows that if a firm is unable to accommodate for
such a capacity, they shouldn’t even think of going into business, regardless of any revenue
rates or costs.

• On the other hand, we can have a system, which is able to handle to load received with ease,
being able to handle large capacities of load. For such cases we have a large �Max,resulting
in the Profits becoming:

P (µ) ! 1

�(↵)

"
�0(r + P )� �Max �

NX

i=1

gi(µi;✓)

#
� P (�0↵� �Max)� CRun (4.58)

Here it is a lot harder to see how profitable the business, and we will have to instead take
into account the Budget Constraint and cost functions.

Whilst this can be seen as a fairly trivial result, it highlights the importance in our model to
accommodate for high loads in order to avoid large penalty costs. The maximum load we can
process comes in part from the servers we choose to have since �Max < µ. In order to accommodate
for these large loads, we need to optimise the servers we have, by using the budget that has been
set for us- which what shall focus upon next.
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4.3. OPTIMISING PROFITS

4.3.2 Utilising the Budget Constraint to Break Even

Now returning back to the scenario explained at the beginning of this section. Suppose, we have
an overall Budget of B. This mean that in order for this business to be profitable in the first place,
we must at least break even.:

P (µ) � B (4.59)

This is when the profits produced by the business are greater than or equal to the initial budget
we set out with. By using the profit-making regime, we observe that:

=) 1

�(↵)

"
�0(r + P )�

 
NX

i=1

f0(µi)� �Max

!
�

NX

i=1

g(µi;✓)

#
� P (�0↵� �Max) � B (4.60)

By simplifying this expression, we get the following Break Even Condition:

�0(r + P ) + �Max � B�(↵) +
NX

i=1

gi(µi;✓) + P�(↵) (�0↵� �Max) +
NX

i=1

f0(µi)

4.3.3 Optimal Resource Allocation

Now that we have established this economic model, we can now return to the central focus of this
paper. So far we have just been using an Ad-Hoc allocation in proportion to the service rate of
the server. But how can we optimise this in order to minimise costs? This is where we can use
the results obtained in the first half of this paper, where we used resource allocation to minimise
average delay times. Now we need to use it to maximise profits. To refine our approach, we firstly
need to notice that the only part of the profit function dependent on the allocation of resources is
the Cost Function, which we need to alter slightly:

C(�,�,µ) =
NX

i=1

f0(µi) + f1(⇢i) (4.61)

Notice that this is very similar to minimising our cost functions in the previous chapter with some
minor di↵erences:

Minimise
1

�

NX

i=1

�iDi ! Minimise
NX

i=1

Di (4.62)

We no longer have the factor of 1
� and each term in the sum is no longer multiplied by �i. By

using our now optimal load ⇢oi = �o

i

µ
i

we can adjust the solutions properly and obtain the following
set of optimal loads for each system:

• A quadratic cost function:

f1(⇢i) = d0⇢i + d1⇢
2
i ) ⇢

0
i =

1

2d1
(µi�0 � d0)

• A cubic cost function:

f1(⇢i) = d0⇢i + d1⇢
2
i + d2⇢

3
i ) ⇢

0
i =

1

3d2

h
� d1 +

q
d

2
1 + 3d2(µi�0 � d0)

i

• An exponential cost function. 2:

f1(⇢i) = e

d
0

⇢
i � 1 ) ⇢

0
i =

1

d0
ln
�0µi

d0

• A cost function akin to the M/M/1 delay functions:

f1(⇢i) = d0
⇢i

1� ⇢i
) ⇢

0
i = 1�

s
d0

µi�0

2
Because we are no longer have the factor of �i on the outside of the exponential, we can no actually find a

functional for for the allocation
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4.4 Optimal Investment Strategy

Another usage for our budget constraint is to optimise which servers we choose to have within our
system. Di↵erent servers have di↵erent costs to purchase, often depending on their service rate.
This budget is expressed: X

i

L(µi)  B

This can be use as a possible Kuhn-Tucker condition to optimise the profits by. However, before
we do that, it is worth noting that since we are optimising in respect to µ:

1

�(↵)

"
�0(r + P )�(↵+ 1,�Max)� �Max�(↵,�Max)�

NX

i=1

gi(µi;✓)�(hi(↵),�Max)

#
� P (�0↵� �Max)� CRun

/ �
"
CRun +

NX

i=1

gi(µi;✓)�(hi(↵),�Max)

#

Now let:

C(µ) = CRun +
NX

i=1

gi(µi;✓)�(hi(↵),�Max) (4.63)

it is easy to see that maximising P (µ) is equivalent to minimising C(µ) in respect to µ.
Thus our problem
Maximise

P (µ)

with respect to:

X

i

L(µi)  B

µi > 0 i = 1, 2, .., N

is equivalent to:
Minimise

C(µ)

with respect to:

X

i

L(µi)  B

µi > 0 i = 1, 2, .., N

We have simply transformed this from a Profit Maximisation Problem to its equivalent Cost Min-
imisation Problem.3. We are equipped with technique from before to solve this problem. Our
Lagrangian is of the form:

L(µ, B ,mi) = C(µ)�  B

"
X

i

L(µi)�B

#
�

NX

i=1

miµi (4.64)

=
NX

i=1

f0(µi) +
NX

i=1

gi(µi;✓)�(hi(↵),�Max)�  B

"
X

i

L(µi)�B

#
�

NX

i=1

miµi (4.65)

By di↵erentiating in respect to µi, we get the following KKT Conditions:

i We are using our full budget

@L
@µi

=
@f0

@µi
(µi) +

@g

@µi
(µi;✓)�(h(↵),�Max)�  B

@L

@µi
(µi) = 0 (4.66)

ii We are not using all of our budget

@L
@µi

=
@f0

@µi
(µi) +

@g

@µi
(µi;✓)�(h(↵),�Max)) = 0 (4.67)

In order to solve this we need to pick suitable functions for f0(µi), f1(⇢i) and L(µi). Like before,
we shall be looking at Linear, Quadratic and Exponential cases:

• Linear Costs: Firstly lets assume the cost of a unit i is merely an scaled up factor in
respect to its computational power. Thus let L(µi) = Lµi. By using linear f0 and f1, we can
evaluate the above conditions as:

@L
@µi

= A�  BL = 0 (4.68)

3
This is a basic concept in Economics and the equivalence should be fairly trivial
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4.4. OPTIMAL INVESTMENT STRATEGY

It is obvious to see that having such structure for the function won’t work in this cases as
all µi’s disappear in in the first order conditions, so it is best to trial with other functions
instead.

• Quadratic Costs: Now, lets assume the cost of a unit i is Quadratic in respect to its
computational power. Thus let L(µi) = L0 +L1µi +L2µi. By using quadratic f0 and f1, we
can evaluate the above conditions as:

@L
@µi

= (A1 + 2A2µi)�  B(L1 + 2L2µi) (4.69)

= A1 �  BL1 + 2(A2 +  BL2)µi = 0 (4.70)

=) µ

⇤
i = max

⇢
�A1 +  BL1

2(A2 +  BL2)
,

�A1

2A2

�
(4.71)

• Exponential Costs: Now, lets assume the cost of a unit i is Quadratic in respect to its
computational power. Thus let L(µi) = L0e

L
1

µ
i . By using quadratic f0 and f1, we can

evaluate the above conditions as:

@L
@µi

= A0A1e
A

1

µ
i �  BL0L1e

L
1

µ
i (4.72)

= A1 �  BL1 + 2(A2 +  BL2)µi = 0 (4.73)

=) µ

⇤
i = max

⇢
�A1 +  BL1

2(A2 +  BL2)
,

�A1

2A2

�
(4.74)

This gives us an optimal µi we should set across a homogeneous system. We find that the value of
µi is homogeneous too across the system, which makes sense for a set of evenly distributed resources
as with this case. However, whilst this equation has given us a solution, it hasn’t actually answer
the question we set out to answer. It has given us the optimal power to set to our resources if
we were able to produce them in a bespoke manner in order to maximise our profits. In reality,
though, this isn’t necessarily how it works. These resources will often come in fixed packages and
we can’t freely choose a specific power. Instead we have to make do with what is available. In
order to do so, we can no longer rely on our previous methods, due the now discrete nature of this
problem. Instead, we will need to reformulate certain aspects of this problem and provide a new
methodology- as we shall do in the next chapter.
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Chapter 5

Extending our problem to a
discrete setting
5.1 Model Setup

So far, we have been assuming that our load and service rate is infinitely divisible and continuous.
However in reality this isn’t necessary the case. For example, if we are simply serving people in
a queue, the only come in units of full person- Not a fraction of a person! Likewise with service
rates, when it comes to something like a computer processor, they only come in fixed sizes. Due
to this, it is now worth reformulating our problem, but this time in a discrete setting. Firstly we
establish that both µi and �i come in pre-set packages such that:1

µi 2 µ̃ = {µA
, µ

B
, ..} 8i = 1, 2, .., S

�j 2 �̃ = {�A,�B , ..} 8j = 1, 2, .., P

where S and P denote the number of di↵erent types of packets arriving and types of servers
available respectively. We also now need to redefine the definitions of � and µ:

� =
X

↵

M↵�
↵

µ =
X

�

K�µ
�

where M↵ denotes the number of packets of type ↵ being used and K� denotes the number of
servers of type � in the system. Let the cost of a to run a processor of type i be:

L(µi) = L

i 8i = 1, 2, .., S

Let the revenue generated by a package of type j be:

R(�j) = r

j 8j = 1, 2, .., P

We can now reformulate our two main problems as follows:

• The problem from [4] now becomes:

Minimise D =
1

�

NX

i=1

�i

µi � �i

in respect to the constraints:

� =
X

↵

M↵�
↵

�i 2 �̃ i = 1, 2, .., N

• The Economic Problem now becomes about:

Maximise P (µ) =
X

↵

p(�)[r↵M↵ � C(�,�⇤|µ)] (5.1)

In Respect to the Budget Constraint:
X

�

K↵L
�  B

To solve such problems, we now need to use a mixture of our discrete and continuous optimisation
methods. First, we shall look to solve the Optimal Routing Problem in this discrete setting. Firstly
by setting the servers to be discrete then see what happens when both our incoming packages and
incumbent servers are discrete.

1
We shall be using subscripts to denote which unit we are referring to and superscripts for the type of unit it

may be
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5.1.1 Optimal Routing: Discrete Servers

Firstly lets assume that our servers come in fixed sizes. For example, they could grow in an
exponential manner

µi 2 A1 = {0.1, 1, 10, 100}

or can just be uniformly distributed over a range:

µi 2 A2 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Just introducing a set of discrete servers doesn’t require too much computation analytically, since
the methodology in [4] still works as we still optimise in respect to a continuous variable. What is
of interest is seeing how the number of idle resources di↵ers in this case. We simulated this process
on several sets for µ and can bee seen below. One thing to notice is how the idle resource curve
now is of the form of a step function. What each step indicates is which type of servers are active
an not. For example, look at the first graph. The first step represents the number of servers which
are below µi = 10, the next step then excludes those with µi = 9, and this trend continues till
about the halfway load (Which is when just have servers with µi = 1 idle) and then it drops o↵
as all workers are now working. Whilst they may just seem trivial, it emphasises how our system
now primarily prioritises high production servers with work as opposed to low production servers.
This is even more noticeable when the servers di↵er in larger scales of magnitude as shown in the
second graph. Here We have idle resources until we are very close to a full load. With the few
powerful resources doing most the work, the majority of servers in the system are mostly idle.

Figure 5.1: These graphs depict the the allocation using servers from the set A1 (Top) and from
the set A2
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5.1.2 Optimal Routing: A Fully Discrete System

Now that have completed the optimisation in respect to discrete servers, we can now observe what
happens when we make the resources discrete too. We have a set load and total service rate for
the system:

� =
X

↵

M↵�
↵

µ =
X

�

K�µ
�

As part of the resource allocation problem we want to do is optimise our M↵ for the whole system.
For example, in the case of having servers belonging to the set �̃ = {1, 10, 100, 1000}, we shall
obtain a random sample of {M1,M10,M100,M1000}.

The values of each M↵ is extracted from a suitable probability distribution. One such distri-
bution would be a geometric distribution of the form:

8↵ 2 �̃ : P(m) = (1� r↵)r
m
↵ (r↵ < 1)

Where P(m) is the probability there exists m servers of type ↵. One thing to notice about the
parameter, r↵, is the following:

�

a
1

< �

a
2

< �

a
3 =) ra

1

> ra
2

> ra
3

This implies that the probability decays exponentially as we look at larger load sizes. We are then
able to use this density to obtain the expected number, E(m↵), of each type of server:

E(m↵) =
X

↵

(1� r↵)r
m
↵ m↵ (5.2)

= (1� r↵) x
d

dx

X

m

(r↵x)
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m(xmr
↵

)

���
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(5.3)

= (1� r↵)
X

m

mr

m
↵ (5.4)

This provides us with the following generating function:

G↵(x) = (1� r↵)
X

m

r

n
↵x

m (5.5)

using the properties of generating functions, we know that:

E(m↵) = xG

0

↵(x)
���
x=1

= (1� r↵)
@

@x

⇢
1

1� r↵x

����
x=1

=
r↵

1� r↵

As r↵ ! 1, the mean diverges. This essentially shows that we expect a large number of packets of
a small size and a small number of packages of a larger size.
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Now that we have our distribution of loads, we can choose an appropriate sample:

�Samp =
X

↵

m↵�↵

This ties nicely into the investment problem too. suppose we want to minimise the costs, f1(⇢i),
across the system, where ⇢i is the usual load each server receives. Let M↵,i denote the number of
packets of size ↵ being assigner to server i. Thus we can say that for each server:

�i =
X

↵

M↵,i�
↵ =) ⇢i =

P
↵ M↵,i�

↵

µi

This ensures we get a fair allocation of resources we get the following optimisation problem to
solve:

Minimise: X

i

f(⇢i)

in respect to:

�i =
X

↵

M↵,i�
↵  µi

� =
X

↵

M↵�
↵

Here we wish to optimise the value of M↵,i for each server. However, this develops into a very
complex combinatorics problem which can’t be solved with ease. However this leaves us with a
valid formulation left for us to solve with an appropriate method.
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5.2 Optimal Investments with Optimised Allocation

Suppose we have system which is required to produce a fixed power, µ, to process the entire load.
This power must greater than or equal to �Max. We have at our disposal a set processors:

µ̃ = {µA
, µ

B
, ..., µ

B}

We wish to optimise the number of each server to have in our system. In order to so, we have
developed the following simple algorithm that we shall explain in this section:

Algorithm 1 Optimal Configuration Algorithm

1: begin
2: Initialise: {µA

, µ

B
, ..}, µ = �

max

, Conf

3: for a = 0 :
j

µ
µA

k
do

4: for b = 0 :
j

µ
µB

k
do

5: ...
6: if aµ

A + bµ

B + ... = µ then
7: config = [a, b, ...]
8: Conf = Conf [ config

9: end
10: ...
11: end
12: Initialise: {PA

, P

B
, ..}, µ, Feas, InFeas

13: for C 2 Config do
14: Costs = Budget�

P
↵ C↵P↵

15: if Costs > 0 then
16: Feas = Feas [ C
17: else: InFeas = InFeas [ C
18: end
19: end
20: Initialise: Pr(x), Optimum Profit = 0
21: for C 2 Feas do
22: if Pr(C) > Optimum Profit then
23: Optimum Profit = Pr(C)
24: Optimum Configuration = C
25: end
26: end
27: return: Optimum Configuration, Optimum Profit
28: end

How it works:

• Combinatorics (Lines 2 to 11): In this section of the algorithm by using the required
power output and the set of resources we can get, we perform a grid search to obtain all
combinations of these servers which give us the required power for the system. This gives
us a feasible configuration set which narrows down our search space for the remainder of the
process.

• Budgetary Constraints (Lines 12 to 19): In this section we further narrow down the
search space by eliminating all combinations which don’t satisfy our budgetary constraints
and place them into a Feasible Set.

• Evaluating Profits (Lines 20 to 26): With our remaining combinations, we compute the
profits obtained from each combination.

• Optimal Output (Line 27): We now sort our final set in order to obtain the combination
of servers which produces the optimal server allocation.

Upon completion of this algorithm, we apply the previously established optimal resource allocations
to the system and as a result we we obtain and optimum state for the system to operate in order
to minimise our costs as well as maximise profits.
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5.2.1 A Numerical Example

For a demonstration of this algorithm at work, we shall use some numerical results shown below:

• We have servers which can be chose from the set :

Servers ={1,10,100,1000}

• Now lets set our maximum demand as µ = �max. The maximum load we can process from
the system won’t exceed the total service rate, so we use this as our upper bound. We let
the Maximum Load be �max = 1000 and initiate the first stage of the algorithm which shall
return all combinations of servers which can at least satisfy this requirement. By doing so-
we reduce our search space from infinite to just 562 possible combinations.

Combinations = Size of Conf = 562

• We now look to implement our budget constraint into this solution , By setting our budget
to B = 3, 000, we work out the cost of the remaining units and see if they fit within this
budget. We end up finding that only 307 of these are within out budget constraint.

Affordable Combinations = Size of Feas = 307

• Now we have our refined search space, we can find the optimal allocation by finding what
combinations provide us with the best profit. We substitute this into the Profit function and
ad on the remainder of the budget we had. We then sort to find the combination with the
largest profit and the algorithm returns:

Optimal Allocation= {450,50,50,0}

Now that an optimal server investment has been made, all that is left is to allocate the resources
in an e�cient manner, in order to obtain optimsed profits.
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Chapter 6

Discussion and Conclusion
As we come to the end of this paper, it is worth summarising the key results we have obtained and
also look at any possible shortfalls of these solutions and where we can go from here.

6.1 Resource Allocation

In regards to the problem of Optimal Resource Allocation, we observed how the distribution of idle
servers at a given load di↵ers as we alter the distribution of the servers across the system, noticing
how when we have a set of steep exponentially distributed servers, we have more idle servers at low
loads, whereas when we have a more flat distribution of servers, the number of idle servers drops
o↵ pretty quickly as the load is increased.

We then generalised the framework for this problem so we could use it to minimise di↵erent types
of functions. This included introducing a upper bound constraint for cost functions that didn’t
diverge at maximum load. We produced results for both quadratic and exponential functions, as
well as more traditional delay functions for the M/D/1 and M/G/1 queues. Due to the direct
relation between the M/G/1 queue and the M/M/1 and M/D/1, the equivalence between these
delay functions can be easily shown.

Proposition 6.1. The optimal delay time for a system of M/D/1 or M/M/1 can be directly
derived from the delay for a system of M/G/1 queues

Proof. The best way to show this is to show that both M/M/1 and M/D/1 formulae can be
derived from the M/G/1 formula.

Di = E[µ�1
i ] +

�iE[µ�2
i ]

2(1� ⇢i)

• For M/M/1 queue, the servers serve at an exponential rate. Thus, E(µ�1
i ) = µ

�1
i and

E(µ�2
i ) = 2µ�2

i

Di = µ

�1
i +

�iµ
�2
i

1� ⇢i
=

µ

�1
i

1� ⇢i
=
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µi � �i
(6.1)

• For M/D/1 queue, the servers serve at an exponential rate. Thus, E(µ�1
i ) = µ

�1
i and

E(µ�2
i ) = µ

�2
i

Di = µ

�1
i +

�iµ
�2
i

2(1� ⇢i)
= µ

�1
i +

�i

2µi(µi � �i)
(6.2)

Whilst we now have these neat usable analytical solutions, whilst investigating other types of
queues, the results aren’t as simple. For example, consider the case of the M/M/1/✓ queue, an
M/M/1 queue with a finite capacity of ✓ in each queue. This has a delay function[17]:

Di =
1

�i

h 1

1� ⇢i
+

1

1� ⇢

✓�1
i

� ✓⇢

✓+1
i

1� ⇢

✓�1
i

i
(6.3)

This will produced a polynomial to solves, which is only solvable analytically for capacities of 1,
2 (which leaves a cubic equation to solve with the Cardano Method), 3 and 4. For any larger
capacities, it becomes impossible to obtain any analytical solutions and only numerical solutions
can be obtained. This shows that whilst we have a robust method transferable to many other
functions, it doesn’t come without its limitations.

35



6.2. INVESTMENT STRATEGIES AND THE ECONOMIC PROBLEM

6.2 Investment Strategies and the Economic Problem

The remainder of this paper then focused upon solving an economic problem derived from solving
the other side of the Resource Allocation Problem. For this problem we produced a profit function
to measure the profits gained from the system, trying out several functional forms and seeing how
these could be optimised. We observed the di↵erent ways in which we could optimise �

Max

, µi and
the resource allocation across the system done in such a way to minimise Total Costs.

6.2.1 Refining our Profit Function

For our Economic Problem, we were using a Profit function of the form:

P (µ) =

Z �
Max

0
d�p(�)

"
r��

NX

i=1

f1(⇢i)

#
�

NX

i=1

f0(µi)�
Z 1

�
Max

d�p(�)P [�� �Max] (6.4)

Whilst it provides a decent evaluation within our framework there are aspects which could be
developed further:

• Constant Revenue Rate (r): We have assumed that revenue rate we obtain from our
output is constant. However, as previously mentioned this is no necessarily the best way
to model the revenue. For example, we are usually serving a market with with a limited
number of customers, as well with external competition. These factors imply we would be
experiencing diminishing returns on the more we sell-this is whee the marginal output of a
process decreases as another factor involved within the production increases[35] . In order to
solve this problem, instead of having r, we should have some revenue function r(�;✓)- where
we have load dependent revenue rate for the system that takes into account the diminishing
returns principle in respect to the total load through the system. Expanding further, if we
were to make this a multiple firm problem, where let’s say we have a market of F firms, where
firm j revenue function of rj(�j ;✓j), then we will also have to take into account some sort of
interacting terms with other firms across the industry. Whilst this is very computationally
heavy and requires a lot more work behind it, it takes us a step closer to having a much more
realistic model we can apply to real world a↵airs.

• Expected Profits: Upon evaluation, this function provides us with the Expected profits,
which is dependent upon the distribution the load into the system follows. However, this
doesn’t necessarily provide a full picture into the reliability of the process. For example,
in our methodology, we assumed that � ⇠ Gamma(↵,�0). The expected value is given by
E(�) = ↵�0. This means that there will be several combinations of the parameters of the
distribution that will have the same mean. Thus we are obtaining a mean but missing the
shape of the distribution in the output. This can create some issues as we essentially have
the knowledge of the amount of risk in the process removed. The mean may be found at
a sharp peak, thus implying a large amount of profits but also high risk. Thus even when
profits are evaluated, you also need to bear in mind. the distribution of the load.

• Heterogeneous Cost Functions: We are assuming the cost to run all processors follows
the exact same method, but this may not necessarily hold. For example, suppose we have
two sets of processors, one being a very powerful one whereas the other one is old a weak.
The more powerful processor’s costs or processing a load may just grow linearly in increasing
power. However, for the weaker set, this growth in cost could be exponential in respect to the
load. This is realistic to assume just by observing the nature of the evolution of computers
over the past few decades. Instead, to make the whole process a lot more realistic, it may be
best to used heterogeneous cost functions instead. In particular, we can make the f1(⇢i)’s in
the system become f1,i(⇢i), where the functional form remains the sames, we have a di↵erence
in parameters from unit to unit. This adjusts for the scaling di↵erences between large and
small resources.
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6.2.2 Dealing with �
0

For the majority of the Economic Problem, we were dealing with mainly analytical results that
can be visualised numerically. However, the optimal solutions could only obtained numerically.
This is due to the nature of the Lagrange multiplier �0. This is because it is both a function
of the total load, �, and set of servers, µ, but can’t be expressed explicitly. This raises issues
when integrating over � when evaluating out profits and di↵erentiating by µi when optimising our
resources. We briefly touched upon dealing with the first problem, which can be overcome with
the help of numerical integration. However, with the second issue, we can resolve this without
having to rely on numerics.

In order to obtain �0 in the first place, we used the identity:

� =
NX

i=1

�

⇤
i

where our optimal allocation is of the form �

⇤
i = min{max{�oi , 0}, 1}. Note that our optimum

allocation, �oi , is in fact a function entirely dependent upon dependent on the servers, total resource
and �0:

�

o
i = �

o
i (�0, µi,�)

Thus, we define the following function:

g(�,µ,�0) =
X

i

�

⇤
i � � ⌘ 0 (6.5)

We shall focus upon the f1(⇢i) part of the profit function, as this is the part a↵ected by resource
allocation. Let the total of these costs be denoted by:

C1(�,µ) =
X

i

Z
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⇤
i ) (6.6)

By di↵erentiating in respect to µi we get the following:
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Note that we have to use the product rule here since not only is it a function of each server, µi,
but also on �0, which is dependent on all servers, causing there to be a set of coupled equations.
The derivative @�0/@µi needed to evaluate Equation 6.7, and it is obtained from our function
g(�,µ,�0), that fixes the Lagrange parameter �0, giving the following identity:

@�0

@µi
=

@g
@µ

i

@g
@�

0

.

Whilst this successfully gives us a solution for @�
0

@µ
i

, when considering the rest of our Lagrangian
equation, we will actually have to go through the motions to determine  B in case the budget
constraint becomes an active constraint, because the actual value of  B needed to keep the budget
constraint will directly influence the optimal strengths µ⇤

i of the resources of various types i.
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6.2.3 Bridging the Gap with Economics

When it comes to the bigger picture, whilst the contents of this paper have mainly looked at
extending the mathematics problem into an Economic Problem. However, we haven’t gone into
much detail how this links into wider Economics and its literature. Specifically, this is essentially an
Industrial Economics Problem. If this research is to be extended, a link with Industrial Economics
will be key, and hopefully an overlap in results will be attained. In addition to this, Industrial
Economics focuses upon processes in wide scale industries and how companies seek to maximise
profits according to the environment they find themselves in with fellow competitors. This adds
another layer to our problem as we now have to consider competition to the firm we are already
modelling for.

6.3 Optimising our Investments

The methodology proposed at the end of Section 4.4, provided us with a way to choose optimal
investments when we have bespoke resources, which we could alter to our own specifications, at
our disposal. Whilst this isn’t the most accessible solution in most industries, we have shown an
option is there if it is feasible. However if we are being bespoke, we should also be more specific
with the kind of functions we are using. In our solution we strictly used the same functional form
for the fixed cost, running cost and pricing of all our resources. In reality these won’t follow the
same form. Load dependent running costs tend to be exponential whereas the cost to buy a certain
processor often follows a tiered approach, where processors with a power within a fixed range will
cost the same price. The price of a unit depends on which predetermined pool its provider feels
it fits into. This results in possible step functions a discontinuities within the graph. This makes
usage of calculus non trivial and might be unsolvable in such a way. This then results us again
taking a step into the direction of discrete optimisation to adjust for this.

Figure 6.1: A depiction of how a tiered pricing system would work. The first graph shows the same
when the price is constant across a tier. The second graph shows a tiered price system, where the
price of a processor is determined by the function abided by the tier it falls within.

6.3.1 Refining our algorithm

At the end of our final chapter, an algorithm is proposed which helps us find the optimal allocation
of servers for our system. It does this by steadily reducing our search space step by step, before
running through all remaining combinations in order to obtain the optimum. Whilst we have
show it works and can be used to get optimal results, for much larger systems we will run into
issues regarding running time since there can be vast numbers of di↵erent combinations we can
have. Whilst not enough time was available to perform this, a future extension would be to refine
this and make it a lot more e�cient so it runs better on large systems. there are a variety of
tried and tested methods which could be used to help the process, such as simulated annealing or
even evolutionary algorithms like Di↵erential Evolution. In addition to this, further aspects of the
algorithm composition can be looked into. For example, at the moment, it doesn’t consider the
money left over from the excess budget from the purchase of resources. By combining refinements
to the economics problem with improvements to the algorithm, will only improve our final result.
We have talked a lot regarding optimal resource allocation and optimal investments, but to gain
the most out of them, we need more of a combination between the two, which has been mostly
lacking up till now. This is the pickup point for any further developments with this research.
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6.4 Final Remarks

Now that we have discussed potential shortfalls and what the next steps to take from here in
regards to our research, we shall one final question a sceptical reader might have had from the
outset: Why are we buying resources that we don’t plan on using in the first place? To some it
may seem reasonable to cut ones’ losses and not waste money on such a purchase. The answer lies
within the finer details of the question. It is not that we are never using these resources. Rather,
it is that we rarely use these resources. Let’s consider the scenario depicted in Figure 6.2. We
have a set of servers that come in five fixed sizes. After allocating resources e�ciently, we observe
the now usual phenomenon of there existing idle servers for low loads in the system, where the
weakest type of resource isn’t used until we reach a load of 0.9. However, what is the probability
of being at any of the stages of idle servers? This will usually be determined by the probability
distribution of �, p(�). So far we have assumed that we have a high probability for lower loads
and a low probability for high loads.

Figure 6.2: A graph depicting the number of idle servers in a large scale process and how this
changes with load of the system

Let’s assume that we remove all servers that remained idle till ⇢ = 0.9. We are left with fewer
servers and a reduction in the total power the system can provide. This new power is given by:

µ̃ = µ��

This causes a rescaling in the load with ⇢ = �
µ being replaced with ⇢̃ = �

µ̃ . After simulating the
process again with this reused set of servers we obtain Figure 6.3. We now have no idle servers
beyond a load of 0.6. Whilst this solution may seem a more e�cient allocation of resource, all is
not as it seems. first arrives the issue of rescaling. The x-axis is now in terms of ⇢̃ instead of ⇢.
Thus skewing perceptions of the likelihood of these events. I fact, the likelihood of having no idle
processors is identical in both scenarios, since the probability depends solely on �- not µ. Instead,
what we have done, by cutting down on the processing power, is reduce the maximum load, �Max,
we are able to process. All this achieves is a reduction in Revenue and increase of incurred Penalty
Costs- thus we may just end up paying up more than the low investment required for a few low
power servers. This all goes to show that in many cases, all is not as it seems and it is worth
investigating deeper.

Figure 6.3: A graph depicting the number of idle servers in the same process as Figure 6.2 but this
time with the least powerful set of servers
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Appendix
MATLAB Codes used

• Code used to derive results for an M/M/1 Queue

1 clear
2 clc
3 N=10000;
4 mui = rand(1,N);
5 %%%LOOP FOR CHANGING DISTRIBUTION OF mui%%%
6 %SET = [1,2,5,10];
7 %for p = SET;
8

9 %% NORMAL %%
10 %mui = normrnd(100,10*p,[1,N]);
11 %for r = 1:N;
12 %while (mui(r)<0)
13 % mui(r) = normrnd(100,10*p);
14 %end
15 %end
16

17 %% Exponential %%
18 %mui = exprnd(p,[1,N]);
19

20 %% Gamma %%
21 %mu0=p;
22 %Beta=0.5;
23 %mui = gamrnd(mu0,Beta,[1,N]);
24 %%
25 mu = sum(mui);
26 for k = 1:1000
27 lambda = mu*k/1000;
28 LOAD(k)=k/1000;
29 beta0 = fzero(@(beta) Sfun(beta,mui,mu,lambda), [0, 1000]);
30 phi0 = 1/(lambda*beta0);
31 % check that the solution works with the orignal equation
32 chek = sum( ...

sqrt(mui/(lambda*phi0)).*heaviside(mui�sqrt(mui/(lambda*phi0))) ...
33 + mui.*heaviside(sqrt(mui/(lambda*phi0))�mui)) � (mu � lambda);
34 max(abs(chek)); % should be small
35 for j = 1:N;
36 l(j)= (mui(j)*lambda/mu);
37 D(j)=l(j)/(mui(j)�l(j));
38 I(j) = sum(heaviside(�1+sqrt(1/(mui(j)*lambda*phi0))));
39 end
40 DOPT(k)= sum( ...

(sqrt(mui*lambda*phi0)�1).*heaviside(sqrt(mui*lambda*phi0)�1))/lambda;
41 P(k)=phi0;
42 DELAY(k)= sum(D)/lambda;
43 IDLE(k)=sum(I);
44 end
45 %% Graphing %%
46 scatter(LOAD,IDLE,'x')
47 hold on
48 plot(LOAD,DOPT,'�','HandleVisibility','off')
49 hold on
50 plot(LOAD,DELAY,'HandleVisibility','off')
51 xlabel('Load ($\rho$)','Interpreter','latex')
52 ylabel('Delay ($D$), Opmitmal Delay ($Dˆ*$), Number of Idle Resources ...

($N 0$)','Interpreter','latex')
53 %end
54 set(gca,'TickLabelInterpreter','latex')
55 set(gca, 'YScale', 'log');
56

57 %% Function to obtain phi0 %%
58 function S = Sfun(beta,mui,mu,lambda)
59 S = sum( sqrt(beta*mui).*heaviside(mui�beta) ...
60 + mui.*heaviside(beta�mui)) � (mu � lambda);
61 end

40



6.4. FINAL REMARKS

• Code used to obtain Numerical results for Quadratic cases

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % otimize resource allocation for quadratic cost�function
3 % z == Phi 0 Lagrange parameter controling sum of loads
4 % Determine lambda as function of z =lammbda*phi0 !!!
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 global N M0 b c la z z0 mui mu
7 %��������������������������������������������������������������������
8 % initialization
9 %��������������������������������������������������������������������

10 N = 10000; % number of processes
11 M0 = 1; % exponentially distibituted resources MEAN
12 a = 1; % parameters of cost function
13 b = 1;
14 c = 1;
15 mui = rand(1,N);
16

17 SET = [1,2,5,10];
18 for p = SET;
19 mu0=1;
20 Beta=0.5*p;
21 mui = gamrnd(mu0,Beta,[1,N]); % exprnd(M0,1,N); % resource parameters
22 % total capacity
23 mui = exprnd(p,[1,N]);
24 mu = sum(mui);
25 %��������������������������������������������������������������������
26 mdat= [];
27 zi= 0.0001:0.01:50;
28 Nl=length(zi);
29

30

31 for i=1:Nl
32 z =zi(i);
33 la = f(z);
34 x i = la/mu;
35 D = N*(x i.*(1+ 0.5*b*x i +c*x i.ˆ2/3))/la;
36 if ((la > 0) & (la < mu))
37 phi0 = z/la;
38 x0i = max(4*c*(z*mui�1),0);
39 x0i = min((sqrt(bˆ2 +x0i) �b)/(2*c),1);
40 D OPT = sum(x0i.*(1+ 0.5*b*x0i +c*x0i.ˆ2/3))/la;
41

42 mdat = [mdat; la/mu, phi0, sum((x0i 0 )),sum((x0i � 1)),D OPT,D,D�D OPT];
43 end
44 end
45 scatter(mdat(:,1),mdat(:,3),'x')
46 hold on
47 plot(mdat(:,1),mdat(:,4),'o')
48 hold on
49 plot(mdat(:,1),mdat(:,5))
50 hold on
51 plot(mdat(:,1),mdat(:,6))
52 %plot(mdat(:,1),mdat(:,2))
53 end
54 set(gca, 'YScale', 'log');
55 xlim([0,1])
56 xlabel('Load ($\rho$)','Interpreter','latex')
57 %ylabel(' Langrange Parameter ($\phi 0$)','Interpreter','latex')
58 ylabel('Delay ($D$), Opmitmal Delay ($Dˆ*$), No. of Idle ($N 0$) and Full ...

($N F$) Resources ','Interpreter','latex')
59 set(gca,'TickLabelInterpreter','latex')
60 function la = f (z)
61 global b c mu mui
62 x0 = max(4*c*(mui*z�1),0);
63 x0 = min((sqrt(bˆ2 +x0) �b)/(2*c),1);
64 la = sum(mui.*x0);
65 end
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• Code to obtain Profits

1 %% Generating Servers%%
2 N=1000;
3 mui = rand(1,N);
4 for p=1:N
5 mui2(p)=mui(p)ˆ2;
6 end
7 mu=sum(mui);
8 %% Obtaining Phi0%%
9 for k = 1:1000

10 lambda = mu*k/1000;
11 beta0 = fzero(@(beta) Sfun(beta,mui,mu,lambda), [0 200]);
12 phi0 = 1/(lambda*beta0);
13 chek = sum( sqrt(mui/(lambda*phi0)).*heaviside(mui�sqrt(mui/(lambda*phi0))) ...
14 + mui.*heaviside(sqrt(mui/(lambda*phi0))�mui)) � (mu � lambda);
15 max(abs(chek)); % should be small
16 Phi(k)=phi0;
17 for j = 1:N
18 phimu(k,j)=sqrt(mui(j)*phi0);
19 end
20 LOAD(k)= lambda;
21 end
22 for i=1:40
23 %% Distribution Parameters %%
24 l0=1000;
25 alpha=2;
26 %% Revenue Parameters %%
27 l max=i;
28 P=2;
29 %% Cost Function Parameters %%
30 zeta=1;
31 Zeta0=.2;
32 Zeta1=.2;
33 Zeta2=.2;
34 A=5;
35 A0=1;
36 A1=1;
37 A2=1;
38 %% Loss Function %%
39 L=1;
40 L0=1;
41 L1=1;
42 L2=1;
43 %% Full Penalty%%
44 P FULL= P*(l0*alpha � l max);
45 %% Full Revenue%%10
46 R = l0*(r+P)*gammainc(alpha+1,l max);
47 %% Expected Profits %%
48 Lin PFT(i) = ...

(R�(A*mu�l max)*gammainc(alpha,l max))�((N*zeta*l0)/mu)*gammainc(alpha+1,l max)�P FULL;
49 Quad PFT(i) = (R�(N*A0+A1*mu+A2*sum(mui2)�l max)*gammainc(alpha,l max) � ...

N*l0*(Zeta0*gammainc(alpha,l max)/l0...
50 + Zeta1*gammainc(alpha+1,l max)/mu + ...

Zeta2*l0*gammainc(alpha+2,l max)/(muˆ2)))� P FULL;
51 %Exp PFT(i) = ...

(R�(A0*exmu�l max)*gammainc(alpha,l max))�N*Zeta0(1/(1+(Zeta1*l0)/mu))ˆalpha*gammainc(alpha,l max)�P FULL;
52 %% Optimal Profits %%
53 %P(i) = r*l0*alpha � ...

sum(integral(sqrt(mui*phi0)�1).*heaviside(sqrt(mui*phi0)�1),�Inf,Inf);
54 X VAL(i)= l max;
55 end
56 %% Graphic Reuslts%%
57 plot(X VAL,Lin PFT)
58 hold on
59 plot (X VAL,Quad PFT)
60 %set(gca, 'YScale', 'log');
61 xlabel('Maximum Load','Interpreter','latex')
62 ylabel('Profits','Interpreter','latex')
63 set(gca,'TickLabelInterpreter','latex')
64 function S = Sfun(beta,mui,mu,lambda)
65 S = sum( sqrt(beta*mui).*heaviside(mui�beta) ...
66 + mui.*heaviside(beta�mui)) � (mu � lambda);
67 end
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• Code to obtain Server Combinations

1 clc, clear all
2 %% Running Costs %%
3 A0=1;
4 A1=1;
5 A2=1;
6 Z0=1;
7 Z1=1;
8 Z2=1;
9 %% Distribution Parameters %%

10 l bar=20;
11 l0=l bar;
12 alpha=20;
13 %% Revenue Parameters %%
14 l max=5;
15 P=2;
16 r=10;
17 %% Combinatorics %%
18 U=10;
19 U1=Uˆ(0);
20 U2=U;
21 U3=Uˆ2;
22 U4=Uˆ3;
23 mu=1000;
24 Conf=[];
25 for i=0:floor(mu/U1)
26 for j= 0:floor(mu/U2)
27 for k=0:floor(mu/U3)
28 for l=0:floor(mu/U4)
29 if i*U1+U2*j+U3*k+U4*l==mu; %Checking if combination is feasible
30 Config = [i,j,k,l];
31 N= i+j+k+l;
32 Conf=[Conf;Config N];
33 else ;
34 end
35

36 end
37 end
38 end
39 end
40 Power= [Conf(:,1)*U1 Conf(:,2)*U2 Conf(:,3)*U3 Conf(:,4)*U4];
41 %% Generating Server Vector %%
42 for i = 1:length(Conf)
43 Vec = {U1*ones(1,Conf(i,1)) U2*ones(1,Conf(i,2)) U3*ones(1,Conf(i,3)) ...

U4*ones(1,Conf(i,4))};
44 mui(i,:)= Vec;
45 end
46 %% Budgeting %%
47 Budget = 3000;
48 P=5;
49 P1=P;
50 P2=Pˆ2;
51 P3=Pˆ3;
52 P4=Pˆ4;
53 Feas=[];
54 InFeas=[];
55 for i=1:length(Conf)
56 Costs =Budget�( P1*Conf(i,1) + P2*Conf(i,2)+P3*Conf(i,3)+P4*Conf(i,4));
57 if ge(Costs, 0);
58 Feas = [Feas; Conf(i,:) Costs];
59 else InFeas = [InFeas; Conf(i,:) Costs];
60 end
61 end
62 Feas;
63 InFeas;
64 %Conf = [Conf Costs'];
65 %Conf = sortrows(Conf,5);
66 %% Fixed Values %%
67 P Full= P*(l0*alpha � l max)
68 R=l0*(r+P)*gammainc(alpha+1,l max)�l max*gammainc(alpha,l max)
69 %% Ad�Hoc Profit %%
70 Prof=[];
71 for i = 1:length(Feas)
72 Lin Prof(i)= R� Feas(i,5)*Z0*l0/mu*gammainc(alpha+1,l max)�P Full�A0*mu;
73 Quad Prof(i)= ...

R�Feas(i,5)*l0*(Z0*l0*gammainc(alpha,l max)+Z1/mu*gammainc(alpha+1,l max)...
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74 +Z2*l0/(muˆ2)*gammainc(alpha+2,l max)) �P Full � ...
(Feas(i,5)*A0+A1*sum(Feas(i,1:4))+A2*sumsqr(Feas(i,1:4)));

75 Prof=[Prof; Lin Prof(i) Quad Prof(i)];
76 end
77 Full = [Feas Prof];
78 Full=sortrows(Full,8);
79 OptAll=Full(1,1:4)
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Self Reflection and Assessment

Personal Thoughts

In regards to how I found this project, I found it quite an enjoyable yet challenging experience. Due to
the nature of the topic, it was far removed from any of the content covered in any of the material in
the Masters Programme. Thus, it required a lot of external to get my head round certain aspects of the
project. It was a Mathematical Modelling problem which only really one paper of substance to base it
o↵. Luckily, I had taken courses in Operational Research and Optimisation Theory in my undergraduate
degree and these helped me tremendously. At times when speaking with my supervisor regarding the
topic, I felt I knew more than the supervisor in certain, which was in a way a good and bad thing. Whilst
at times it would give me confidence in my own ability, other times it was di�cult to convince them at
times to use alternative methods to what we would initially be suggesting. But this helped me develop
my skills at communicating my academic knowledge in an e↵ective manner. Having said that though,
my supervisor was great and I really couldn’t ask for much more. They were always willing to help out
whenever I had questions. Even though they were poor with email communications, if I swung by his
o�ce he was very cooperative. There were a few weeks in the summer where I ended up popping in
every day. They had a clear initial plan for where the project should head, but we ended up taking a few
detours and looking at some alternative problems, after pointing out some flaws in the way they were
thinking about the problem. In fact we did a lot more that what I could cover in this report. But in order
to maintain a linear narrative throughout, I had to choose what I thought would show my best results.
In fact, my supervisor has said I should continue seeing him regarding my results after the completion of
my thesis, where he said he would be willing to also work on it and we can produce a solid publication
out of it.

Things didn’t always go smoothly though. As someone with little programming experience, I had a
lot of di�culty obtaining numerical results initially. But as the project progressed I got much better on
producing my own code to solve my problems. In August, I su↵ered a few unexpected delays, with my
supervisor going away for two weeks and me having to sit an exam. This caused the project to overrun
into time where I would have started a full time job, which made it a lot trickier to meet the initial
deadlines I had set out for myself. But in the end I feel I got there in the end (just about!).

Marking myself against assessment criteria

• Student initiative and amount of guidance required

I feel I was able to steer the project in a suitable direction producing my own results often on my own

accord, and checking up with my supervisor at appropriate times to make sure it was a sustainable

direction

• Scientific quality: how well the material in the project scope has been covered, e.g. are methods
being used correctly, have results been discussed critically

I feel the methodology is explained a lot throughout this paper. It is very heavy on the equations,

which I have repeated myself on multiple occasions to ensure they’re done correctly. I have also been

equally critical of the models produced and throughout the paper it is looking to build upon this

• Breadth: the amount of background material, over and above lecture module content, that the
student has incorporated into the project

Due to the aforementioned departure from the material taught on my course, I felt it was necessary

to perform a full review on queuing theory and optimisation methods to ensure the reader will fully

understand the terminology and methods being used throughout. This required souring from a lot of

external material to ensure it gave enough information.

• Originality: the extent to which the student has contributed own ideas, perspectives etc to the
project

Despite given an initial model and method form my supervisor to work with, throughout the process

i was always going back and formulating it to make it as realistic as possible within the time frame

I had

• Presentation and logical structure of the report, including English style, readability and coherence
of the report as a whole, quality of the abstract, introduction, figures and reference list and the way
the latter two are co-ordinated with the text.

The project has a clear structure to it with each chapter building upon the foundations set by the

previous ones in order to reach the final goal

Overall Mark: I am expecting to receive a strong Distinction in this project, but it comes down to how
well I have managed to express my results and whether the reader gains as much as I did
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