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The marginal density of Y2|Y1 is given by:

p(y2|y1) =
p(y1, y2)

p(y1)
(1)

Here the joint distribution p(y1, y2) = p(y), which is given by:

p(y) =
1

(2π)
p
2 |Σ| 12

e−
1
2 (y−µ)T Σ−1(y−µ) (2)

∝ e− 1
2 (y−µ)T Σ−1(y−µ) (3)

We shall focus on the terms in the exponent and to simplify things will use δy = (y − µ) =

[
δy1

δy2

]
and will

use Λ = Σ−1.

−1

2
(y − µ)TΣ−1(y − µ) = −1

2
δyTΛδy (4)

= −1

2

[
δyT1 δyT2

] [Λ11 Λ12

Λ21 Λ22

] [
δy1

δy2

]
(5)

= −1

2

[
δyT1 Λ11δy1 + δyT1 Λ12δy2 + δyT2 Λ21δy1︸ ︷︷ ︸

=δyT
1 Λ12δy2

+δyT2 Λ22δy2

]
(6)

= −1

2
δyT1 Λ11δy1 −

1

2
δyT2 Λ22δy2 − δyT1 Λ12δy2 (7)

Note that on line 6 of the equation, we use the property of of scalar results from matrix multiplication in
order to equate δyT2 21Λδy1 = δyT1 12Λδy2. At this stage, we need to complete the square.
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Theorem 1 (Completing the Square). For symmetric A ∈ RNxN and x,b ∈ RN :

1

2
xTAx + 2bTx =

1

2
(x +A−1b)TA(x +A−1b)− 1

2
bTA−1b (8)

Proof. For scalars we have the following formula for completing the square:

a

2
x2 + bx =

a

2

(
x+

b

a

)2

− b2

2a
(9)

In higher dimensions, we want to get it into a similar form:

1

2
xTAx + btx =

1

2
(x + m)TA(x + m)− c (10)

where m and c are vectors to be determined. By expanding the brackets on the left hand side:

1

2
(x + m)TA(x + m)− c =

1

2
xTAx +

1

2
xTAm +

1

2
mTAx +

1

2
mTAm− c

=
1

2
xTAx + mTA︸ ︷︷ ︸

=bT

x +
1

2
mTAm− c︸ ︷︷ ︸

=0

Here we have mTA = bT and 1
2m

TAm− c = 0. From the first equality, we see that m = A−1b and
we substitute this into the latter to get:

c =
1

2
mTAm

=
1

2
bTA−1AA−1b

=
1

2
bTA−1b

By substituting these back into equation (3) we obtain our desired solution.

Now going back to our equation, we pick out the terms we want to use the completing the square method
on:

− 1

2
δyT1 Λ11δy1 −

1

2
δyT2︸︷︷︸
xT

Λ22︸︷︷︸
A

δy2︸︷︷︸
x

− δyT1 Λ12︸ ︷︷ ︸
bT

δy2︸︷︷︸
x

(11)

= −1

2
δyT1 Λ11δy1 −

1

2
(δy2 + Λ−1

22 Λ21δy1)TΛ22(δy2 + Λ−1
22 Λ21δy1) +

1

2
δyT1 Λ12Λ−1

22 Λ21δy1 (12)

= −1

2
δyT1 (Λ11 − Λ12Λ−1

22 Λ21)δy1 −
1

2
(δy2 + Λ−1

22 Λ21δy1)TΛ22(δy2 + Λ−1
22 Λ21δy1) (13)

We can now put these terms into the exponential to get:

p(y1, y2) ∝ e− 1
2 δy

T
1 (Λ11−Λ12Λ−1

22 Λ21)δy1− 1
2 (δy2+Λ−1

22 Λ21δy1)T Λ22(δy2+Λ−1
22 Λ21δy1) (14)

= e−
1
2 δy

T
1 (Λ11−Λ12Λ−1

22 Λ21)δy1e−
1
2 (δy2+Λ−1

22 Λ21δy1)T Λ22(δy2+Λ−1
22 Λ21δy1) (15)

= e−
1
2 (y1−µ1)T (Λ11−Λ12Λ−1

22 Λ21)(y1−µ1)︸ ︷︷ ︸
1

e−
1
2 ((y2−µ2)+Λ−1

22 Λ21(y1−µ1))T Λ22((y2−µ2)+Λ−1
22 Λ21(y1−µ1))︸ ︷︷ ︸

2

(16)

This is now the product of two Gaussian distributions:

1. In this section, we have y1 ∼ Np1(µ1, (Λ11 − Λ12Λ−1
22 Λ21)−1).

2. In this section, we have y2|y1 ∼ Np2(µ2 − Λ−1
22 Λ21(y1 − µ1),Λ−1

22 ).
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Since we have p(y2|y1) = p(y1,y2)
p(y1) , we can drop the first term. Hence we get:

p(y2|y1) ∼ Np2(µ2 − Λ−1
22 Λ21(y1 − µ1),Λ−1

22 ) (17)

as required.

in order to reach this expression, we need to evaluate the block inverse of Σ:[
Σ11 Σ12

Σ21 Σ22

]−1

=

[
Λ11 Λ12

Λ21 Λ22

]
(18)

Here, we use the block inverse formula

[
A B
C D

]−1

=

[
M −ABN

−NC−1A N

]
, where M = (A−BD−1C)−1 and

N = (D − CA−1B)−1. This is of a slightly different form to what was provided with in the question, but it
is equivalent and tidier to use [Source: Matrix Cookbook, P46], we can see that:

Λ21 = −(Σ22 − Σ21Σ−1
11 Σ12)−1Σ−1

21 Σ11 (19)

Λ22 = (Σ22 − Σ21Σ−1
11 Σ12)−1 (20)

By substituting this into our derived expression we reach our final solution.
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Estimation with Gaussians

Conditional expectation as “best” predictor

Theorem 1 (Mean Squared Error). Let X and Y be two jointly distributed random variables with
density function f(x, y). Suppose we want to find a prediction function g(X) that minimises the mean
square error MSE = E[(Y − g(X))2]. Show that g(X) = E[Y |X].

Proof. Let’s denote E[Y |X] = µY |X

MSE =

∫ ∫
(y − g(x))2f(y|x)dyf(x)dx

=

∫ ∫
((y − µY |X) + (µY |X − g(x)))2f(y|x)dyf(x)dx

=

∫ ∫
(µY |X − g(x))2f(y|x)dyf(x)dx+ 2

∫ ∫
(y − µY |X)(µY |X − g(x))f(y|x)dyf(x)dx

+

∫ ∫
(y − µY |X)2f(y|x)dyf(x)dx︸ ︷︷ ︸

We can drop this term as it is independent of g(x)

∝
∫ ∫

(µY |X − g(x))2f(y|x)dyf(x)dx+ 2

∫ ∫
(y − µY |X) (µY |X − g(x))︸ ︷︷ ︸

Independant of Y

f(y|x)dyf(x)dx

=

∫ ∫
(µY |X − g(x))2f(y|x)dyf(x)dx+ 2

∫
(µY |X − g(x))

∫
(y − µY |X)f(y|x)dy︸ ︷︷ ︸

= E[Y − µY |X |X]

= E[Y |X]− µY |X = 0

f(x)dx

=⇒ MSE =

∫ ∫
(µY |X − g(x))2f(y|x)dyf(x)dx ≥ 0

This final expression has a minimum of 0. the only way this is obtained is when the function on the inside
of the integral is equal to 0. this is only possible when g(x) = µY |X = E[Y |X], as required.

MLE of σ2

Theorem 2. Consider the linear model Y ∼ NN (Xβ, σ2I). Show that the maximum likelihood

estimator of σ2 is σ̂2 = 1
N (Y −Xβ̂)T (Y −Xβ̂) and this is a biased estimator.

1



Proof. The pdf of the multivariate normal distribution is given by:

p(y) =
1

(2π)
N
2 |σ2I| 12

e−
1

2σ2
(y−Xβ)T (y−Xβ)

In this scenario, we can simply use our pdf as just the Likelihood function:1

L(β, σ2;Y) =
1

(2π)
N
2 |σ2I| 12

e−
1

2σ2
(y−Xβ)T (y−Xβ)

By taking the log likelihood we get:

`(β, σ2;Y) = log[L(β, σ2;Y)]

= −N
2

log(2π)− N

2
log σ2 − 1

2σ2
(y −Xβ)T (y −Xβ)

By differentiating in respect to σ2, we get:

∂`

∂σ2
= −N

2

1

σ2
+

1

2(σ2)2
(y −Xβ)T (y −Xβ) = 0

=⇒ σ̂2 =
1

N
(Y −Xβ̂)T (Y −Xβ̂)

Now we have our estimator, we must show that it is biased. Here we let dim(X) = p

E[σ̂2] = E
[ 1

N
(Y −Xβ̂)T (Y −Xβ̂)

]
=

1

N
E
[
Y TY − Y TXβ̂ − β̂TXTY + β̂TXTXβ̂

]
=

1

N
E
[
Y TY − Y TX(XTX)−1XTY − Y TX(XTX)−1XTY + Y TX(XTX)−1XTX(XTX)−1XTY

]
=

1

N
E
[
Y TY − Y TX(XTX)−1XTY − Y TX(XTX)−1XTY + Y TX(XTX)−1XTY

]
=

1

N
E
[
Y TY − Y TX(XTX)−1XTY

]
=

1

N
E
[
Y TY

]
− 1

N
E
[
Y TX(XTX)−1XTY

]
=

1

N
trace

(
E
[
Y TY

]]
− 1

N
trace

(
E
[
X(XTX)−1XTY Y T

])

=
1

N
trace

(
E
[
Y TY

])
− 1

N
trace

(
E
[
X(XTX)−1XTY Y T

])

=
1

N
trace

(
σ2IN

)
− 1

N
trace

(
X(XTX)−1XTE

[
Y Y T

])

=
σ2

N
trace

(
IN
)
− σ2

N
trace

(
X(XTX)−1XT

)

=
σ2

N
N − σ2

N
trace

(
XTX(XTX)−1

)

=
σ2

N
N − σ2

N
trace

(
Ip
)

=
σ2

N
N − σ2

N
p =

N − p
N

σ2 6= σ2

Hence we have a biased estimator
1For anyone interested in seeing a derivation of the MLE of a Multivariate Normal Distribution with a given sample check

out this proof
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Obtaining an unbiased estimator for σ2

Even though σ̂2
MLE is a biased estimator, we can still use it to obtain an unbiased Estimator:

E[σ̂2
MLE ] =

N − p
N

σ2

E
[ 1

N
(Y −Xβ̂)T (Y −Xβ̂)

]
=
N − p
N

σ2

N

N − p
E
[ 1

N
(Y −Xβ̂)T (Y −Xβ̂)

]
= σ2

E
[ 1

N − p
(Y −Xβ̂)T (Y −Xβ̂)︸ ︷︷ ︸

=S2

]
= σ2

Here we have an estimator S2 = 1
N−p (Y − Xβ̂)T (Y − Xβ̂), such that E[S2] = σ2. Hence S2 is an

unbiased estimator of σ2.

Weighted Data Points

Consider a data set in which each data point (yi,xi) has a weight wi > 0 associated with it, so that the sum
of squares error function becomes:

S =
1

2

N∑
i=1

wi(yi − βTφ(xi))
2 (1)

We shall derive the parameter vector which minimises the error function, β∗.

=
1

2

N∑
i=1

wi(yi − βTφ(xi))
2

=
1

2
(Y −

φ(x1)
...

φ(xN )

β)T

w1 . . . 0
...

. . .
...

0 . . . wN

 (Y −

φ(x1)
...

φ(xN )

β)

=
1

2
(Y −Xβ)TW (Y −Xβ)

We now take first order conditions of the equation:

∂S

∂β
= −XTW (Y −Xβ) = 0

=⇒ β∗ = (XTWX)−1XTWY

But what are the advantages of using these weights?

• Focusing accuracy We may care very strongly about predicting the response for certain values of the
input — ones we expect to see often again, ones where mistakes are especially costly or embarrassing or
painful, etc. than others. If we give the points xi near that region big weights wi, and points elsewhere
smaller weights, the regression will be pulled towards matching the data in that region. This will help
us in cases when we do have replicated data points.

• Discounting imprecision. Ordinary least squares is the maximum likelihood estimate when the ε
in Y = Xβ + ε is IID Gaussian white noise. This means that the variance of ε has to be constant,
and we measure the regression curve with the same precision elsewhere. This situation, of constant

3



noise variance, is called homoskedasticity. Often however the magnitude of the noise is not constant,
and the data are heteroskedastic. When we have heteroskedasticity, even if each noise term is
still Gaussian, ordinary least squares is no longer the maximum likelihood estimate, and so no longer
efficient. If however we know the noise variance σ2

i at each measurement i, and set wi = 1/σ2
i , we get

the heteroskedastic MLE, and recover efficiency. To say the same thing slightly differently, there’s just
no way that we can estimate the regression function as accurately where the noise is large as we can
where the noise is small. Trying to give equal attention to all parts of the input space is a waste of
time; we should be more concerned about fitting well where the noise is small, and expect to fit poorly
where the noise is big.

• Doing something else. There are a number of other optimization problems which can be transformed
into, or approximated by, weighted least squares. The most important of these arises from generalized
linear models, where the mean response is some nonlinear function of a linear predictor.2

Heteroskedasticity: An overview

Heteroskedasticity is a hard word to pronounce, but it doesn’t need to be a difficult concept to
understand. Put simply, heteroskedasticity refers to the circumstance in which the variability of a
variable is unequal across the range of values of a second variable that predicts it.

A scatterplot of these variables will often create a cone-like shape, as the variance of the depen-
dent variable widens or narrows as the value of the independent variable increases. The inverse of
heteroskedasticity is homoscedasticity, which indicates that a dependant variable’s variance is equal
across values of an independent variable.

For example: annual income might be a heteroskedastic vari-
able when predicted by age, because most teenagers aren’t
flying around in jets that they bought from their own in-
come. More commonly, teen workers earn close to the mini-
mum wage, so there isn’t a lot of variability during the teen
years. However, as teens turn into 20-somethings, and 20-
somethings into 30-somethings, some will tend to shoot-up
the tax brackets, while others will increase more gradually
(or perhaps not at all, unfortunately). Put simply, the gap
is likely to widen with age. If the above where true and I
had a random sample of earners across all ages, a plot of
the association between age and income would demonstrate
heteroskedasticity, like this:

Heteroskedasticity is most frequently discussed in terms of the assumption of parametric analyses
(e.g. linear regression). More specifically, it is assumed that the error of a regression model is
homoskedastic across all values of the predicted value of the dependant variable. Put more simply, a
test of homoskedasticity of error terms determines whether a regression model’s ability to predict a
variable is consistent across all values. If a regression model is consistently accurate when it predicts
low values, but highly inconsistent in accuracy when it predicts high values, then the results of that
regression should not be trusted.

I want to re-iterate that the concern about heteroskedasticity, in the context of regression and other
parametric analyses, is specifically related to error terms and NOT between two individual variables.
This is a common misconception, similar to the misconception about normality (Variables need not
be normally distributed, as long as the residuals of the regression model are normally distributed).

2Lecture 18: Extending Linear Regression: Weighted Least Squares, Heteroskedasticity, Local Polynomial Regression,
Carnegie Mellon University: 36-350, Data Mining
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